Download Free Simple Statistical Methods For Software Engineering Book in PDF and EPUB Free Download. You can read online Simple Statistical Methods For Software Engineering and write the review.

Although there are countless books on statistics, few are dedicated to the application of statistical methods to software engineering. Simple Statistical Methods for Software Engineering: Data and Patterns fills that void. Instead of delving into overly complex statistics, the book details simpler solutions that are just as effective and connect wi
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.
Applied Statistics for Software Managers is the first complete guide to using statistical techniques to solve specific software development and maintenance problems. You don't need a mathematical background; Katrina Maxwell presents an easy-to-follow methodology and detailed case studies that show you exactly how to assess productivity, time to market, development costs, maintenance cost drivers, and more.
This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
"While it is usually helpful to launch improvement programs, many such programs soon get bogged down in detail. They either address the wrong problems, or they keep beating on the same solutions, wondering why things don't improve. This is when you need an objective way to look at the problems. This is the time to get some data." Watts S. Humphrey, from the Foreword This book, drawing on work done at the Software Engineering Institute and other organizations, shows how to use measurements to manage and improve software processes. The authors explain specifically how quality characteristics of software products and processes can be quantified, plotted, and analyzed so the performance of software development activities can be predicted, controlled, and guided to achieve both business and technical goals. The measurement methods presented, based on the principles of statistical quality control, are illuminated by application examples taken from industry. Although many of the methods discussed are applicable to individual projects, the book's primary focus is on the steps software development organizations can take toward broad-reaching, long-term success. The book particularly addresses the needs of software managers and practitioners who have already set up some kind of basic measurement process and are ready to take the next step by collecting and analyzing software data as a basis for making process decisions and predicting process performance. Highlights of the book include: Insight into developing a clear framework for measuring process behavior Discussions of process performance, stability, compliance, capability, and improvement Explanations of what you want to measure (and why) and instructions on how to collect your data Step-by-step guidance on how to get started using statistical process control If you have responsibilities for product quality or process performance and you are ready to use measurements to manage, control, and predict your software processes, this book will be an invaluable resource.
In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
Statistical Analysis of Human Growth and Development is an accessible and practical guide to a wide range of basic and advanced statistical methods that are useful for studying human growth and development. Designed for nonstatisticians and statisticians new to the analysis of growth and development data, the book collects methods scattered throughout the literature and explains how to use them to solve common research problems. It also discusses how well a method addresses a specific scientific question and how to interpret and present the analytic results. Stata is used to implement the analyses, with Stata codes and macros for generating example data sets, a detrended Q-Q plot, and weighted maximum likelihood estimation of binary items available on the book’s CRC Press web page. After reviewing research designs and basic statistical tools, the author discusses the use of existing tools to transform raw data into analyzable variables and back-transform them to raw data. He covers regression analysis of quantitative, binary, and censored data as well as the analysis of repeated measurements and clustered data. He also describes the development of new growth references and developmental indices, the generation of key variables based on longitudinal data, and the processes to verify the validity and reliability of measurement tools. Looking at the larger picture of research practice, the book concludes with coverage of missing values, multiplicity problems, and multivariable regression. Along with two simulated data sets, numerous examples from real experimental and observational studies illustrate the concepts and methods. Although the book focuses on examples of anthropometric measurements and changes in cognitive, social-emotional, locomotor, and other abilities, the ideas are applicable to many other physical and psychosocial phenomena, such as lung function and depressive symptoms.