Download Free Silicon Processing For The Vlsi Era Book in PDF and EPUB Free Download. You can read online Silicon Processing For The Vlsi Era and write the review.

A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available.
Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand.
Excellent teaching and resource material . . . it is concise, coherently structured, and easy to read . . . highly recommended for students, engineers, and researchers in all related fields." -Corrosion on the First Edition of Fundamentals of Electrochemical Deposition From computer hardware to automobiles, medical diagnostics to aerospace, electrochemical deposition plays a crucial role in an array of key industries. Fundamentals of Electrochemical Deposition, Second Edition is a comprehensive introduction to one of today's most exciting and rapidly evolving fields of practical knowledge. The most authoritative introduction to the field so far, the book presents detailed coverage of the full range of electrochemical deposition processes and technologies, including: * Metal-solution interphase * Charge transfer across an interphase * Formation of an equilibrium electrode potential * Nucleation and growth of thin films * Kinetics and mechanisms of electrodeposition * Electroless deposition * In situ characterization of deposition processes * Structure and properties of deposits * Multilayered and composite thin films * Interdiffusion in thin film * Applications in the semiconductor industry and the field of medicine This new edition updates the prior edition to address the new developments in the science and its applications, with new chapters on innovative applications of electrochemical deposition in semiconductor technology, magnetism and microelectronics, and medical instrumentation. Added coverage includes such topics as binding energy, nanoclusters, atomic force, and scanning tunneling microscopy.Example problems at the end of chapters and other features clarify and improve understanding of the material. Written by an author team with extensive experience in both industry and academe, this reference and text provides a well-rounded introduction to the field for students, as well as a means for professional chemists, engineers, and technicians to expand and sharpen their skills in using the technology.
This issue of ECS Transactions contains the papers presented in the symposium on Silicon Nitride, Silicon Dioxide Thin Insulating Films, and Emerging Dielectics held May 6-11, 2007 in Chicago. Papers were presented on deposition, characterization and applications of the dielectrics including high- and low-k dielectrics, as well as interface states, device characterization, reliabiliy and modeling.
Nanotechnology and microengineering are among the top priority research areas for the US and Europe. This text provides coverage of all aspects of the attempt to build functional devices at a molecular size.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
This volume analyzes and summarizes recent developments in several key interfacial electrochemical systems in the areas of fuel cell electrocatatalysis, electrosynthesis and electrodeposition. The six Chapters are written by internationally recognized experts in these areas and address both fundamental and practical aspects of several existing or emerging key electrochemical technologies. The Chapter by R. Adzic, N. Marinkovic and M. Vukmirovic provides a lucid and authoritative treatment of the electrochemistry and electrocatalysis of Ruthenium, a key element for the devel- ment of efficient electrodes for polymer electrolyte (PEM) fuel cells. Starting from fundamental surface science studies and interfacial considerations, this up-to-date review by some of the pioneers in this field, provides a deep insight in the complex catalytic-electrocatalytic phenomena occurring at the interfaces of PEM fuel cell electrodes and a comprehensive treatment of recent developments in this extremely important field. Several recent breakthroughs in the design of solid oxide fuel cell (SOFC) anodes and cathodes are described in the Chapter of H. Uchida and M. Watanabe. The authors, who have pioneered several of these developments, provide a lucid presentation d- cribing how careful fundamental investigations of interfacial electrocatalytic anode and cathode phenomena lead to novel electrode compositions and microstructures and to significant practical advances of SOFC anode and cathode stability and enhanced electrocatalysis.
The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech nologies. This book is written with the need for a "bridge" between different disciplines in mind. It is intended to present to engineers and scientists those parts of modem processing technologies that are of greatest importance to the design and manufacture of semi conductor circuits. The material is presented with sufficient detail to understand and analyze interactions between processing and other semiconductor disciplines, such as design of devices and cir cuits, their electrical parameters, reliability, and yield.
Achieving cost-effective performance over time requires an organized, disciplined, and time-phased approach to product design, development, qualification, manufacture, and in-service management. Guidebook for Managing Silicon Chip Reliability examines the principal failure mechanisms associated with modern integrated circuits and describes common practices used to resolve them. This quick reference on semiconductor reliability addresses the key question: How will the understanding of failure mechanisms affect the future? Chapters discuss: failure sites, operational loads, and failure mechanism intrinsic device sensitivities electromigration hot carrier aging time dependent dielectric breakdown mechanical stress induced migration alpha particle sensitivity electrostatic discharge (ESD) and electrical overstress latch-up qualification screening guidelines for designing reliability Guidebook for Managing Silicon Chip Reliability focuses on device failure and causes throughout - providing a thorough framework on how to model the mechanism, test for defects, and avoid and manage damage. It will serve as an exceptional resource for electrical engineers as well as mechanical engineers working in the field of electronic packaging.