Download Free Silicon Photonics Design Book in PDF and EPUB Free Download. You can read online Silicon Photonics Design and write the review.

This hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs.
The growing demand for instant and reliable communication means that photonic circuits are increasingly finding applications in optical communications systems. One of the prime candidates to provide satisfactory performance at low cost in the photonic circuit is silicon. Whilst silicon photonics is less well developed as compared to some other material technologies, it is poised to make a serious impact on the telecommunications industry, as well as in many other applications, as other technologies fail to meet the yield/performance/cost trade-offs. Following a sympathetic tutorial approach, this first book on silicon photonics provides a comprehensive overview of the technology. Silicon Photonics explains the concepts of the technology, taking the reader through the introductory principles, on to more complex building blocks of the optical circuit. Starting with the basics of waveguides and the properties peculiar to silicon, the book also features: Key design issues in optical circuits. Experimental methods. Evaluation techniques. Operation of waveguide based devices. Fabrication of silicon waveguide circuits. Evaluation of silicon photonic systems. Numerous worked examples, models and case studies. Silicon Photonics is an essential tool for photonics engineers and young professionals working in the optical network, optical communications and semiconductor industries. This book is also an invaluable reference and a potential main text to senior undergraduates and postgraduate students studying fibre optics, integrated optics, or optical network technology.
Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.
This graduate-level textbook presents the principles, design methods, simulation, and materials of photonic circuits. It provides state-of-the-art examples of silicon, indium phosphide, and other materials frequently used in these circuits, and includes a thorough discussion of all major types of devices. In addition, the book discusses the integrated photonic circuits (chips) that are currently increasingly employed on the international technology market in connection with short-range and long-range data communication. Featuring references from the latest research in the field, as well as chapter-end summaries and problem sets, Principles of Photonic Integrated Circuits is ideal for any graduate-level course on integrated photonics, or optical technology and communication.
The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors,
Silicon photonics uses chip-making techniques to fabricate photonic circuits. The emerging technology is coming to market at a time of momentous change. The need of the Internet content providers to keep scaling their data centers is becoming increasing challenging, the chip industry is facing a future without Moore's law, while telcos must contend with a looming capacity crunch due to continual traffic growth. Each of these developments is significant in its own right. Collectively, they require new thinking in the design of chips, optical components, and systems. Such change also signals new business opportunities and disruption. Notwithstanding challenges, silicon photonics' emergence is timely because it is the future of several industries. For the optical industry, the technology will allow designs to be tackled in new ways. For the chip industry, silicon photonics will become the way of scaling post-Moore's law. New system architectures enabled by silicon photonics will improve large-scale computing and optical communications. Silicon Photonics: Fueling the Next Information Revolution outlines the history and status of silicon photonics. The book discusses the trends driving the datacom and telecom industries, the main but not the only markets for silicon photonics. In particular, developments in optical transport and the data center are discussed as are the challenges. The book details the many roles silicon photonics will play, from wide area networks down to the chip level. Silicon photonics is set to change the optical components and chip industries; this book explains how. - Captures the latest research assessing silicon photonics development and prospects - Demonstrates how silicon photonics addresses the challenges of managing bandwidth over distance and within systems - Explores potential applications of SiP, including servers, datacenters, and Internet of Things
Silicon photonics is currently a very active and progressive area of research, as silicon optical circuits have emerged as the replacement technology for copper-based circuits in communication and broadband networks. The demand for ever improving communications and computing performance continues, and this in turn means that photonic circuits are finding ever increasing application areas. This text provides an important and timely overview of the ‘hot topics’ in the field, covering the various aspects of the technology that form the research area of silicon photonics. With contributions from some of the world’s leading researchers in silicon photonics, this book collates the latest advances in the technology. Silicon Photonics: the State of the Art opens with a highly informative foreword, and continues to feature: the integrated photonic circuit; silicon photonic waveguides; photonic bandgap waveguides; mechanisms for optical modulation in silicon; silicon based light sources; optical detection technologies for silicon photonics; passive silicon photonic devices; photonic and electronic integration approaches; applications in communications and sensors. Silicon Photonics: the State of the Art covers the essential elements of the entire field that is silicon photonics and is therefore an invaluable text for photonics engineers and professionals working in the fields of optical networks, optical communications, and semiconductor electronics. It is also an informative reference for graduate students studying for PhD in fibre optics, integrated optics, optical networking, microelectronics, or telecommunications.
From the beginning Integrated Photonics introduces numerical techniques for studying non-analytic structures. Most chapters have numerical problems designed for solution using a computational program such as Matlab or Mathematica. An entire chapter is devoted to one of the numeric simulation techniques being used in optoelectronic design (the Beam Propagation Method), and provides opportunity for students to explore some novel optical structures without too much effort. Small pieces of code are supplied where appropriate to get the reader started on the numeric work. Integrated Photonics is designed for the senior/first year graduate student, and requires a basic familiarity with electromagnetic waves, and the ability to solve differential equations with boundary conditions.
This book is volume II of a series of books on silicon photonics. It gives a fascinating picture of the state-of-the-art in silicon photonics from a component perspective. It presents a perspective on what can be expected in the near future. It is formed from a selected number of reviews authored by world leaders in the field, and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of micro- and nanophotonics and optoelectronics.
This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting the reader with all the issues in the design space, the discussion concludes with design automation techniques, supplemented by provided software.