Download Free Silicon On Ferroelectric Insulator Field Effect Transistor Soffet Book in PDF and EPUB Free Download. You can read online Silicon On Ferroelectric Insulator Field Effect Transistor Soffet and write the review.

The path of down-scaling traditional MOSFET is reaching its technological, economic and, most importantly, fundamental physical limits. Before the dead-end of the roadmap, it is imperative to conduct a broad research to find alternative materials and new architectures to the current technology for the MOSFET devices. Beyond silicon electronic materials like group III-V heterostructure, ferroelectric material, carbon nanotubes (CNTs), and other nanowire-based designs are in development to become the core technology for non-classical CMOS structures. Field effect transistors (FETs) in general have made unprecedented progress in the last few decades by down-scaling device dimensions and power supply level leading to extremely high numbers of devices in a single chip. High density integrated circuits are now facing major challenges related to power management and heat dissipation due to excessive leakage, mainly due to subthreshold conduction. Over the years, planar MOSFET dimensional reduction was the only process followed by the semiconductor industry to improve device performance and to reduce the power supply. Further scaling increases short-channel-effect (SCE), and off-state current makes it difficult for the industry to follow the well-known Moore’s Law with bulk devices. Therefore, scaling planar MOSFET is no longer considered as a feasible solution to extend this law. The down-scaling of metal-oxide-semiconductor field effect transistors (MOSFETs) leads to severe short-channel-effects and power leakage at large-scale integrated circuits (LSIs). The device, which is governed by the thermionic emission of the carriers injected from the source to the channel region, has set a limitation of the subthreshold swing (S) of 60 mV/decade at room temperature. Devices with ‘S’ below this limit is highly desirable to reduce the power consumption and maintaining a high Ion/Ioff current ratio. Therefore, the future of semiconductor industry hangs on new architectures, new materials or even new physics to govern the flow of carriers in new switches. As the subthreshold swing is increasing at every technology node, new structures using SOI, multi-gate, nanowire approach, and new channel materials such as III–V semiconductor have not satisfied the targeted values of subthreshold swing. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic emission limit of 60 mV/decade. This value was unbreakable by the new structure (SOI FinFET). On the other hand, most of the preview proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for sub-60 mV/decade designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This dissertation also proposes a novel design that exploits the concept of negative capacitance. The new field-effect-transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field effect-transistor (SOFFET). This proposal is a promising methodology for future ultra low-power applications because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers a subthreshold swing significantly lower than 60 mV/decade and reduced threshold voltage to form a conducting channel. The proposed SOFFET design, which utilizes the negative capacitance of a ferroelectric insulator in the body-stack, is completely different from the FeFET and NCFET designs. In addition to having the NC effect, the proposed device will have all the advantages of an SOI device. Body-stack that we are intending in this research has many advantages over the gate-stack. First, it is more compatible with the existing processes. Second, the gate and the working area of the proposed SOFFET is like the planar MOSFET. Third, the complexity and ferroelectric material interferences are shifted to the body of the device from the gate and the working area. The proposed structure offers better scalability and superior constructability because of the high-dielectric buried insulator. Here we are providing a very simplified model for the structure. Silicon-on-ferroelectric leads to several advantages including low off-state current and shift in the threshold voltage with the decrease of the ferroelectric material thickness. Moreover, having an insulator in the body of the device increases the controllability over the channel, which leads to the reduction in the short-channel-effect (SCE). The proposed SOFFET offers low value of subthreshold swing (S) leading to better performance in the on-state. The off-state current is directly related to S. So, the off-state current is also minimum in the proposed structure.
Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in subnanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-lowpower applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.
This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.
ABSTRACT: The growth of consumer electronics over the past few decades has been directly related to the advances in semiconductor technology. Devices have consistently grown smaller, faster, and cheaper at regular intervals leading to revolutionary new products reaching the market place. The basic building block of digital systems, such as the personal computer, is the Field Effect Transistor (FET). This thesis describes some of the silicon fabrication methods that are used to produce the FET and other related devices. The silicon-on-insulator technique that has been used to improve device performance is also discussed and a brief overview of the operation of various forms of the FET follows. An array of FETs was fabricated and tested using the clean room facility at the University of North Carolina at Charlotte and this thesis concludes with a description of the fabrication sequence and the results. The fabrication sequence includes mask design and generation, photolithography, doping, contact formation, and device testing.
A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.
While the electrical transport characteristics of organic electronic devices are generally inferior to their inorganic counterparts, organic materials offer many advantages over inorganics. The materials used in organic devices can often be deposited using cheap and simple processing techniques such as spincoating, inkjet printing, or roll-to-roll processing; allow for large-scale, flexible devices; and can have the added benefits of being transparent or biodegradable. In this manuscript, we examine the role of solvents in the performance of pentacene-based devices using the ferroelectric copolymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFe) as a gate insulating layer. High dipole moment solvents, such as dimethyl sulfoxide, used to dissolve the copolymer for spincoating increase the charge carrier mobility in field-effect transistors (FETs) by nearly an order of magnitude as compared to lower dipole moment solvents. The polarization in Al/PVDF-TrFe/Au metal-ferroelectric-metal devices also shows an increase in remnant polarization of ~20% in the sample using dimethyl sulfoxide as the solvent for the ferroelectric. Interestingly, at low applied electric fields of ~100 MV/m a remnant polarization is seen in the high dipole moment device that is nearly 3.5 times larger than the value observed in the lower dipole moment samples, suggesting that the degree of dipolar order is higher at low operating voltages for the high dipole moment device. This work shows that the performance of electronic devices can be improved simply by selection of fabrication materials, potentially opening up simpler fabrication processes for large scale manufacturing of organic electronics. We will also discuss the use of peptide-based nanostructures derived from natural amino acids as building blocks for biocompatible devices. These peptides can be used in a bottom-up process without the need for expensive lithography. Thin films of L,L-diphenylalanine micro/nanostructures (FF-MNSs) were used as the dielectric layer in pentacene-based FETs and metalinsulator-semiconductor diodes both in bottom-gate and top-gate structures. It is demonstrated that the FFMNSs can be functionalized for detection of enzyme-analyte interactions. This work opens up a novel and facile route towards scalable organic electronics using peptide nanostructures as scaffolding and as a platform for biosensing.
Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.