Download Free Silicon Integrated Circuits Book in PDF and EPUB Free Download. You can read online Silicon Integrated Circuits and write the review.

Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition presents much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon. By properly understanding the properties of polycrystalline silicon and their relation to the deposition conditions, polysilicon can be designed to ensure optimum device and integrated-circuit performance. Polycrystalline silicon has played an important role in integrated-circuit technology for two decades. It was first used in self-aligned, silicon-gate, MOS ICs to reduce capacitance and improve circuit speed. In addition to this dominant use, polysilicon is now also included in virtually all modern bipolar ICs, where it improves the basic physics of device operation. The compatibility of polycrystalline silicon with subsequent high-temperature processing allows its efficient integration into advanced IC processes. This compatibility also permits polysilicon to be used early in the fabrication process for trench isolation and dynamic random-access-memory (DRAM) storage capacitors. In addition to its integrated-circuit applications, polysilicon is becoming vital as the active layer in the channel of thin-film transistors in place of amorphous silicon. When polysilicon thin-film transistors are used in advanced active-matrix displays, the peripheral circuitry can be integrated into the same substrate as the pixel transistors. Recently, polysilicon has been used in the emerging field of microelectromechanical systems (MEMS), especially for microsensors and microactuators. In these devices, the mechanical properties, especially the stress in the polysilicon film, are critical to successful device fabrication. Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition is an invaluable reference for professionals and technicians working with polycrystalline silicon in the integrated circuit and display industries.
* Examines the various methods available for circuit protection, including coverage of the newly developed ESD circuit protection schemes for VLSI circuits. * Provides guidance on the implementation of circuit protection measures. * Includes new sections on ESD design rules, layout approaches, package effects, and circuit concepts. * Reviews the new Charged Device Model (CDM) test method and evaluates design requirements necessary for circuit protection.
This book describes techniques that can reduce mechanical-stress-induced inaccuracy and long-term instability in chips. The authors also show that the piezojunction effect can be applied for new types of mechanical-sensor structures. Thermo-mechanical stress is induced when packaged chips cool down to the temperature of application.
Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.
Recent years have seen silicon integrated circuits enter into an increasing number of technical and consumer applications, until they now affect everyday life, as well as technical areas. Polycrystalline silicon has been an important component of silicon technology for nearly two decades, being used first in MOS integrated circuits and now becoming pervasive in bipolar circuits, as well. During this time a great deal of informa tion has been published about polysilicon. A wide range of deposition conditions has been used to form films exhibiting markedly different properties. Seemingly contradictory results can often be explained by considering the details of the structure formed. This monograph is an attempt to synthesize much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon so that it can be used most effectively to enhance device and integrated-circuit perfor mance. As device performance improves, however, some of the proper ties of polysilicon are beginning to restrict the overall performance of integrated circuits, and the basic limitations of the properties of polysili con also need to be better understood to minimize potential degradation of circuit behavior.
Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization
Explains the circuit design of silicon optoelectronic integrated circuits (OEICs), which are central to advances in wireless and wired telecommunications. The essential features of optical absorption are summarized, as is the device physics of photodetectors and their integration in modern bipolar, CMOS, and BiCMOS technologies. This information provides the basis for understanding the underlying mechanisms of the OEICs described in the main part of the book. In order to cover the topic comprehensively, Silicon Optoelectronic Integrated Circuits presents detailed descriptions of many OEICs for a wide variety of applications from various optical sensors, smart sensors, 3D-cameras, and optical storage systems (DVD) to fiber receivers in deep-sub-μm CMOS. Numerous detailed illustrations help to elucidate the material.
Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters—physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This publication is a good source for students and individuals interested in MOS-based integrated circuits.
Silicon-On-Insulator (SOI) Technology: Manufacture and Applications covers SOI transistors and circuits, manufacture, and reliability. The book also looks at applications such as memory, power devices, and photonics. The book is divided into two parts; part one covers SOI materials and manufacture, while part two covers SOI devices and applications. The book begins with chapters that introduce techniques for manufacturing SOI wafer technology, the electrical properties of advanced SOI materials, and modeling short-channel SOI semiconductor transistors. Both partially depleted and fully depleted SOI technologies are considered. Chapters 6 and 7 concern junctionless and fin-on-oxide field effect transistors. The challenges of variability and electrostatic discharge in CMOS devices are also addressed. Part two covers recent and established technologies. These include SOI transistors for radio frequency applications, SOI CMOS circuits for ultralow-power applications, and improving device performance by using 3D integration of SOI integrated circuits. Finally, chapters 13 and 14 consider SOI technology for photonic integrated circuits and for micro-electromechanical systems and nano-electromechanical sensors. The extensive coverage provided by Silicon-On-Insulator (SOI) Technology makes the book a central resource for those working in the semiconductor industry, for circuit design engineers, and for academics. It is also important for electrical engineers in the automotive and consumer electronics sectors. - Covers SOI transistors and circuits, as well as manufacturing processes and reliability - Looks at applications such as memory, power devices, and photonics