Download Free Silicon In Organic Organometallic And Polymer Chemistry Book in PDF and EPUB Free Download. You can read online Silicon In Organic Organometallic And Polymer Chemistry and write the review.

A comprehensive, up-to-date reference to synthetic applications of organosilicon chemistry Organic, organometallic, and polymer chemistry as well as materials science all utilize silicon in various forms, yet there is little cross-fertilization of ideas and applications among the disciplines. This book presents a much-needed overview of silicon chemistry, allowing fundamental and applied scientists to take full advantage of progress made within and outside their primary fields of expertise. With an emphasis on the preparation and reactivity of silicon compounds in organic, organometallic, and polymer chemistry, the author examines a broad range of useful topics-from mechanisms to syntheses of and syntheses using different organofunctional silanes. Numerous schemes as well as up-to-date examples from academia and industry will help readers to solve current synthetic problems and explore ideas for future research. Clear, concise coverage includes: * The mechanistic basis for the development of new silicon-based reactions * Formation and cleavage of silane reagents and functional siliconheteroatom compounds * Silicones, silica, polysilanes, and other silicon-containing polymers * Properties of molecules containing silicon, including bioactivity * Methods for the preparation of Si-C compounds * Silicon in organic synthesis * An extensive functional group index for easy access to functional group transformations
Modern Synthetic and Application Aspects of Polysilanes: An Underestimated Class of Materials?, by A. Feigl, A. Bockholt, J. Weis, and B. Rieger; * Conjugated Organosilicon Materials for Organic Electronics and Photonics, by Sergei A. Ponomarenko and Stephan Kirchmeyer; * Polycarbosilanes Based on Silicon-Carbon Cyclic Monomers, by E.Sh. Finkelshtein, N.V. Ushakov, and M.L. Gringolts; * New Synthetic Strategies for Structured Silicones Using B(C6F5)3, by Michael A. Brook, John B. Grande, and François Ganachaud; * Polyhedral Oligomeric Silsesquioxanes with Controlled Structure: Formation and Application in New Si-Based Polymer Systems, by Yusuke Kawakami, Yuriko Kakihana, Akio Miyazato, Seiji Tateyama, and Md. Asadul Hoque;
"This book presents a much needed overview of silicon chemistry, allowing fundamental and applied scientists to take full advantage of progress made within and outside their primary fields of expertise. With an emphasis on the preparation and reactivity of silicon compounds in organic, organometallic, and polymer chemistry, the author examines a broad range of useful topics - from mechanisms to syntheses of and syntheses using different organofunctional silanes. Numerous schemes as well as up-to-date examples from academia and industry will help readers to solve current synthetic problems and explore ideas for future research."--Jaquette du livre.
Organosilicon Compounds: Theory and Experiment (Synthesis), volume 1, comprises two parts. The first part, Theory, covers state-of-the-art computational treatments of unusual nonstandard organosilicon compounds that classical bonding theory fails to describe adequately. The second part, Experiment (Synthesis), describes recent synthetic advances in the preparation of a variety of organosilicon compounds with different coordination numbers of the central silicon: from tetracoordinate to low-coordinate to hypercoordinate derivatives. Organosilicon Compounds: From Theory to Synthesis to Applications provides a comprehensive overview of this important area of organic and organometallic chemistry, dealing with compounds containing carbon–silicon bonds. This field, which includes compounds that are widely encountered in commercial products such as in the fabrication of sealants, adhesives, and coatings, has seen many milestone discoveries reported during the last two decades. Beginning with the theoretical aspects of organosilicon compounds' structure and bonding, the book then explores their synthetic aspects, including main group element organosilicon compounds, transition metal complexes, silicon cages and clusters, low-coordinate organosilicon derivatives (cations, radicals, anions, multiple bonds to silicon, silaaromatics), and more. Next, readers will find valuable sections that explore physical and chemical properties of organosilicon compounds by means of X-ray crystallography, 29Si NMR spectroscopy, photoelectron spectroscopy, and other methods. Finally, the work delves into applications for industrial uses and in many related fields, such as polymers, material science, nanotechnology, bioorganics, and medicinal silicon chemistry. - Features valuable contributions from prominent experts that cover both fundamental (theoretical, synthetic, physico-chemical) and applied (material science, applications) aspects of modern organosilicon chemistry - Covers important breakthroughs in the field, along with the historically significant achievements of the past - Includes applied information for a wide range of specialists, from junior and senior researchers (from both academia and industry) - Ideal reference for those working in organometallic, organosilicon, main group element, transition metal, and industrial silicon chemistry, as well as those from interdisciplinary fields, such as polymer, material science, and nanotechnology
This book has the highest impact factor of all publications ranked by ISI within polymer science. It contains short and concise reports on physics and chemistry of polymers, each written by the world renowned experts. It remains valid and useful after 5 or 10 years. The electronic version is available free of charge for standing order customers at: springer.com/series/12/.
This book has its origins in courses taught by the author to various und- graduate and graduate students at the Indian Institute of Technology, K- pur, India. The diversity of inorganic chemistry and its impact on polymer chemistry has been profound. This subject matter has grown considerably in the last decade and the need to present it in a coherent manner to young minds is a pedagogic challenge. The aim of this book is to present to the students an introduction to the developments in Inorganic and - ganometallic polymers. This book is divided into eight chapters. Chapter 1 provides a general overview on the challenges of Inorganic polymer synthesis. This is f- lowed by a survey of organic polymers and also includes some basic f- tures of polymers. Chapters 3-8 deal with prominent families of inorganic and organometallic polymers. Although the target group of this book is the undergraduate and graduate students of chemistry, chemical engineering and materials science it is also hoped that chemists and related scientists in industry would find this book useful. I am extremely thankful to my wife Sudha who not only encouraged me throughout but also drew all the Figures and Schemes of this book. I also thank my children Adithya and Aarathi for their constant concern on the progress of this book. I express my acknowledgment to the editorial team of Springer-Verlag for their cooperation.
Silicon-containing Polymers reflects the growing interest worldwide in this developing field. Silicon polymers are now finding use as moulding materials, rubbers, ceramic precursors, in lithography and reprography as photosensitive materials, as conducting polymers, and in a host of other applications. This book presents up-to-date research from all over the world. It brings together research from the forefront of a multidisciplinary subject, covering the synthesis, modification, characterization, properties and applications of polysiloxanes, polysilylenes, polysilazanes and organosilicate derivatives. Silicon-containing Polymers will be of interest to researchers and postgraduates in any area of materials science, as well as some areas of inorganic chemistry.
For fifty years, Hydrosilylation has been one of the most fundamental and elegant methods for the laboratory and industrial synthesis of organosilicon and silicon related compounds. Despite the intensive research and continued interest generated by organosilicon compounds, no comprehensive book incorporating its various aspects has been published this century. The aim of this book is to comprehensively review the advances of hydrosilylation processes since 1990. The survey of the literature published over the last two decades enables the authors to discuss the most recent aspects of hydrosilylation advances (catalytic and synthetic) and to elucidate the reaction mechanism for the given catalyst used and the reaction utilization. New catalytic pathways under optimum conditions necessary for efficient synthesis of organosilicon compounds are presented. This monograph shows the extensive development in the application of hydrosilylation in organic and asymmetric syntheses and in polymer and material science.
Silicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products and high technology applications. Among them, silicones are certainly the most well–known, however there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact some are already available like polysilsesquioxanes and polysilanes. All these silicon based materials can adopt very different structures like chains, dendrimers, hyperbranched and networks, physical and chemical gels. The result is a vast array of materials with applications in various areas such as optics, electronics, ionic electrolytes, liquid crystals, biomaterials, ceramics and concrete, paints and coatings ... all needed to face the environmental, energetical and technological issues of today. Some industrial aspects of the applications of these materials will also be presented.
Organometallic Polymers focuses on the synthesis, characterization, and potential applications of organometallic polymers. The discussion is organized around seven themes: vinyl polymerization of organometallic monomers; condensation polymerization of organometallic monomers; polymer-bound catalysts; applications of organotin polymers; developments in organosilicon polymers; phosphonitrile and sulfur nitride polymers; and coordination polymers. This book is comprised of 33 chapters and begins with a general review of polymerized vinyl monomers containing transition metals, as well as the reactivity of such monomers in addition to homo- and copolymerizations. The following chapters explore the participation of the ferrocene nucleus in the polymerization of vinylferrocene and its effect on polymer properties; thermomechanical transitions of ferrocene-containing polymers; photocrosslinkable organometallic polyesters; and supported catalysts for ethylene polymerization. The remaining sections discuss antifouling applications of various tin-containing organometallic polymers; structure and applications of polyphosphazenes and polymeric sulfur nitride; and coordination of inorganic ions to polymers. This monograph will be a useful resource for organic chemists and research workers in the field.