Download Free Silicon Germanium Tin And Lead Compounds Book in PDF and EPUB Free Download. You can read online Silicon Germanium Tin And Lead Compounds and write the review.

With the power and range of modern pulse spectrometers the compass of NMR spec troscopy is now very large for a single book-but we have undertaken this. Our book covers the Periodic Table as multinuclear spectrometers do, and introductory chapters are devoted to the essentials of the NMR experiment and its products. Primary products are chemical shifts (including anisotropies), spin-spin coupling constants, and relaxation times; the ultimate product is a knowledge of content and constitution, dynamic as well as static. Our province is chemical and biochemical rather than physical or technical; only passing reference is made to metallic solids or unstable species, or to practical NMR spectroscopy. Our aim is depth as well as breadth, to explain the fundamental processes, whether of nuclear magnetic shielding, spin-spin coupling, relaxation, or the multiple pulse sequences that have allowed the development of high-resolution studies of solids, multidimensional NMR spectroscopy, techniques for sensitivity enhancement, and so on. This book therefore combines the functions of advanced textbook and reference book. For reasonably comprehensive coverage in a single volume we have sum marized the information in tables and charts, and included all leading references.
Organometallic chemistry is an interdisciplinary science which continues to grow at a rapid pace. Although there is continued interest in synthetic and structural studies the last decade has seen a growing interest in the potential of organometallic chemistry to provide answers to problems in catalysis synthetic organic chemistry and also in the development of new materials. This Specialist Periodical Report aims to reflect these current interests reviewing progress in theoretical organometallic chemistry, main group chemistry, the lanthanides and all aspects of transition metal chemistry. Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Organogermanium Compounds Understand the chemistry of organogermanium compounds with this thorough and cutting-edge reference Discovered comparatively late in the history of chemistry, germanium has become one of the most technology-critical elements in modern industry. Germanium and its inorganic and organic derivatives found widespread applications in fiber- and infrared-optics, electronics, polymerization catalysis, solar electric technology, nanotechnology, chemotherapy, and more. Organogermanium compounds containing carbon to germanium chemical bonds, have applications in microelectronics, medicinal and health industries, and beyond. Organogermanium Compounds: Theory, Experiment, and Applications, 2 Volume Set provides a comprehensive review of this class of compounds in two thorough volumes. It covers all modern aspects of these critically important compounds, including theoretical, synthetic, physico-chemical, and applied research. Reflecting the latest breakthroughs in this rapidly growing field, this book promises to serve as the high-level reference for those readers who are interested in organogermanium chemistry. Organogermanium Compounds readers will also find: 19 chapters produced by leading global experts Descriptions of pivotal historical achievements in organogermanium research Coverage of the latest computational, synthetic, and applied breakthroughs Organogermanium Compounds is a critical reference for researchers and professionals in a wide range of academic and industrial fields working with these fascinating compounds. This will also be helpful for university and college students, at both graduate and undergraduate levels.
This volume is exclusively devoted to tetramethyllead. Owing to the recent large-scale use as an antiknock agent, its application, toxicological, biological, and environmental aspects are given much attention besides its chemical and physical properties. - Literature coverage up to 1986.
The present volume opens the Gmelin series on organogermanium compounds, that is, those compounds containing at least one germanium-to-carbon bond. This whole series is being coordinated by Professor J. Satge of the Universite Paul Sabatier in Toulouse. Germanium is of historical interest because its existence was predicted by Newlands in 1864 and by Mendeleeff in 1871 although it was not isolated until1887 by Winkler. Mendeleeff's predictions of the properties of germanium and its compounds by comparison with what was known of the chemistry of its neighbors, silicon and tin, proved remarkably accurate and included predictions of the existence of organic derivatives GeR and of their properties. 4 Although significant applications are as yet lacking for organogermanium compounds in contrast to organo-silicon, -tin, and -lead compounds there has been considerable interest in the parallel development of its chemistry. Up to 1983 about 1500 publications have appeared on organogermanium chemistry. The material of the present series will be grouped in a similar way as for the organotin series beginning with compounds containing only one germanium atom (mononuclear com pounds) and continuing with binuclear up to polynuclear compounds. Within each group the compounds are arranged by the kind of non-carbon substituents rather than by following the usual Gmelin principle of the last position using the Gmelin system of elements.
Organosilicon Compounds: Theory and Experiment (Synthesis), volume 1, comprises two parts. The first part, Theory, covers state-of-the-art computational treatments of unusual nonstandard organosilicon compounds that classical bonding theory fails to describe adequately. The second part, Experiment (Synthesis), describes recent synthetic advances in the preparation of a variety of organosilicon compounds with different coordination numbers of the central silicon: from tetracoordinate to low-coordinate to hypercoordinate derivatives. Organosilicon Compounds: From Theory to Synthesis to Applications provides a comprehensive overview of this important area of organic and organometallic chemistry, dealing with compounds containing carbon–silicon bonds. This field, which includes compounds that are widely encountered in commercial products such as in the fabrication of sealants, adhesives, and coatings, has seen many milestone discoveries reported during the last two decades. Beginning with the theoretical aspects of organosilicon compounds' structure and bonding, the book then explores their synthetic aspects, including main group element organosilicon compounds, transition metal complexes, silicon cages and clusters, low-coordinate organosilicon derivatives (cations, radicals, anions, multiple bonds to silicon, silaaromatics), and more. Next, readers will find valuable sections that explore physical and chemical properties of organosilicon compounds by means of X-ray crystallography, 29Si NMR spectroscopy, photoelectron spectroscopy, and other methods. Finally, the work delves into applications for industrial uses and in many related fields, such as polymers, material science, nanotechnology, bioorganics, and medicinal silicon chemistry. - Features valuable contributions from prominent experts that cover both fundamental (theoretical, synthetic, physico-chemical) and applied (material science, applications) aspects of modern organosilicon chemistry - Covers important breakthroughs in the field, along with the historically significant achievements of the past - Includes applied information for a wide range of specialists, from junior and senior researchers (from both academia and industry) - Ideal reference for those working in organometallic, organosilicon, main group element, transition metal, and industrial silicon chemistry, as well as those from interdisciplinary fields, such as polymer, material science, and nanotechnology
Leading the reader from the fundamental principles of inorganic chemistry, right through to cutting-edge research at the forefront of the subject, Inorganic Chemistry, Seventh Edition is the ideal course companion for the duration of a student's degree. The authors have drawn upon their extensive teaching and research experience to update this text; the seventh edition retains the much-praised clarity of style and layout from previous editions, while offering an enhanced section on 'expanding our horizons'. The latest innovative applications of green chemistry have been added, to clearly illustrate the real-world significance of the subject. This edition also sees a greater used of learning features, including substantial updates to the problem solving questions, additional self-tests and walk through explanations which enable students to check their understanding of key concepts and develop problem-solving skills. Providing comprehensive coverage of inorganic chemistry, while placing it in context, this text will enable the reader to fully master this important subject. Online Resources: Inorganic Chemistry, Seventh Edition is accompanied by a range of online resources: For registered adopters of the text: DT Figures, marginal structures, and tables of data ready to download DT Test bank For students: DT Answers to self-tests and exercises from the book DT Tables for group theory DT Web links DT Links to interactive structures and other resources on www.chemtube3D.com