Download Free Silicon Germanium Alloys Book in PDF and EPUB Free Download. You can read online Silicon Germanium Alloys and write the review.

Despite the vast knowledge accumulated on silicon, germanium, and their alloys, these materials still demand research, eminently in view of the improvement of knowledge on silicon-germanium alloys and the potentialities of silicon as a substrate for high-efficiency solar cells and for compound semiconductors and the ongoing development of nanodevic
This book provides a concise but comprehensive introduction to the fundamentals and current state of the art in thermoelectrics. Addressing an audience of materials scientists and engineers, the book covers theory, materials selection, and applications, with a wide variety of case studies reflecting the most up-to-date research approaches from the past decade, from single crystal to polycrystalline form and from bulk to thin films to nano dimensions. The world is facing major challenges for finding alternate energy sources that can satisfy the increasing demand for energy consumption while preserving the environment. The field of thermoelectrics has long been recognized as a potential and ideal source of clean energy. However, the relatively low conversion efficiency of thermoelectric devices has prevented their utility on a large scale. While addressing the need for thermal management in materials, device components, and systems, thermoelectrics provides a fundamental solution to waste heat recovery and temperature control. This book summarizes the global efforts that have been made to enhance the figure of merit of various thermoelectric materials by choosing appropriate processes and their influence on properties and performance. Because of these advances, today, thermoelectric devices are found in mainstream applications such as automobiles and power generators, as opposed to just a few years ago when they could only be used in niche applications such as in aeronautics, infrared imaging, and space. However, the continued gap between fundamental theoretical results and actual experimental data of figure of merit and performance continues to challenge the commercial applications of thermoelectrics. This book presents both recent achievements and continuing challenges, and represents essential reading for researchers working in this area in universities, industry, and national labs.
Carbon (C) and Silicon Germanium (SiGe) work like a magic sauce. At least in small concentrations, they make everything taste better. It is remarkable enough that SiGe, a new material, and the heterobipolar transistor, a new device, appear on the brink of impacting the exploding wireless market. The addition of C to SiGe, albeit in small concentrations, looks to have breakthrough potential. Here, at last, is proof that materials science can put a rocket booster on the silicon-mind, the silicon transistor. Scientific excitement arises, as always, from the new possibilities a multicomponent materials system offers. Bandgaps can be changed, strains can be tuned, and properties can be tailored. This is catnip to the materials scientist. The wide array of techniques applied here to the SiGeC system bear testimony to the ingenious approaches now available for mastering the complexities of new materials
Despite the vast knowledge accumulated on silicon, germanium, and their alloys, these materials still demand research, eminently in view of the improvement of knowledge on silicon–germanium alloys and the potentialities of silicon as a substrate for high-efficiency solar cells and for compound semiconductors and the ongoing development of nanodevices based on nanowires and nanodots. Silicon, Germanium, and Their Alloys: Growth, Defects, Impurities, and Nanocrystals covers the entire spectrum of R&D activities in silicon, germanium, and their alloys, presenting the latest achievements in the field of crystal growth, point defects, extended defects, and impurities of silicon and germanium nanocrystals. World-recognized experts are the authors of the book’s chapters, which span bulk, thin film, and nanostructured materials growth and characterization problems, theoretical modeling, crystal defects, diffusion, and issues of key applicative value, including chemical etching as a defect delineation technique, the spectroscopic analysis of impurities, and the use of devices as tools for the measurement of materials quality.
Silicon-Germanium Alloys for Photovoltaic Applications provides a comprehensive look at the use of Silicon-Germanium alloys Si1-xGex in photovoltaics. Different methods of Si1-xGex alloy deposition are reviewed, including their optical and material properties as function of Ge% are summarized, with SiGe use in photovoltaic applications analyzed. Fabrication and characterization of single junction Si1-xGex solar cells on Si using a-Si as emitter is discussed, with a focus on the effect of different Ge%. Further, the book highlights the use Si1-xGex as a template for lattice matched deposition of III-V layers on Si, along with its challenges and benefits, including financial aspects. Finally, fabrication and characterization of single junction GaAsxP1-x cells on Si via Si1-xGex is discussed, along with the simulation and modeling of graded SiGe layers and experimental model verification. - Includes a summary of SiGe alloys material properties relevant for solar research, all compiled at one place - Presents various simulation models and analysis of SiGe material properties on solar cell performance - Includes a cost-analysis for III-V/Si solar cells via SiGe alloys
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
This informative, new resource presents the first comprehensive treatment of silicon-germanium heterojunction bipolar transistors (SiGe HBTs). It offers you a complete, from-the-ground-up understanding of SiGe HBT devices and technology, from a very broad perspective. The book covers motivation, history, materials, fabrication, device physics, operational principles, and circuit-level properties associated with this new cutting-edge semiconductor device technology. Including over 400 equations and more than 300 illustrations, this hands-on reference shows you in clear and concise language how to design, simulate, fabricate, and measure a SiGe HBT.
Germanium is an elemental semiconductor, which played an important role in the birth of the semiconductor but soon was replaced with silicon. However, germanium is poised to make a remarkable comeback in the semiconductor industry. With this increasing attention, this book describes the fundamental aspects of germanium and its applications. The contributing authors are experts in their field with great in-depth knowledge. The authors strongly feel that this contribution might be of interest to readers and help to expand the scope of their knowledge.
The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.
This volume systematically evaluates and reviews the properties of silicon germanium within a structured framework, relating them where appropriate to stoichiometry and strain. The invited contributions include concise discussion and expert guidance to the reference literature.