Download Free Silica Optical Fiber Technology For Devices And Components Book in PDF and EPUB Free Download. You can read online Silica Optical Fiber Technology For Devices And Components and write the review.

From basic physics to new products, Silica Optical Fiber Technology for Device and Components examines all aspects of specialty optical fibers. Moreover, the inclusion of the latest international standards governing optical fibers enables you to move from research to fabrication to commercialization. • Reviews all the latest specialty optical fiber technologies, including those developed for high capacity WDM applications; broadband fiber amplifiers; fiber filleters based on periodic coupling; fiber branching devices; and fiber terminations • Discusses key differences among single mode fibers, multimode fibers for high speed Ethernet LAN, and dispersion compensating fibers for long-haul applications • Compares the most recently developed conventional optical fibers with the latest photonic crystal fibers still in development A self-contained, menu-driven software program is included for optical fiber design, simulating waveguide structures for most of the fibers discussed in the book.
From basic physics to new products, Silica Optical Fiber Technology for Device and Components examines all aspects of specialty optical fibers. Moreover, the inclusion of the latest international standards governing optical fibers enables you to move from research to fabrication to commercialization. • Reviews all the latest specialty optical fiber technologies, including those developed for high capacity WDM applications; broadband fiber amplifiers; fiber filleters based on periodic coupling; fiber branching devices; and fiber terminations • Discusses key differences among single mode fibers, multimode fibers for high speed Ethernet LAN, and dispersion compensating fibers for long-haul applications • Compares the most recently developed conventional optical fibers with the latest photonic crystal fibers still in development A self-contained, menu-driven software program is included for optical fiber design, simulating waveguide structures for most of the fibers discussed in the book.
The development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments. The book presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The extensively revised chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. New material focuses on the applications of highly nonlinear fibers in areas ranging from wavelength laser tuning and nonlinear spectroscopy to biomedical imaging and frequency metrology. Technologies such as quantum cryptography, quantum computing, and quantum communications are also covered in a new chapter. This book will be an ideal reference for: R&D engineers working on developing next generation optical components; scientists involved with research on fiber amplifiers and lasers; graduate students and researchers working in the fields of optical communications and quantum information. The only book on how to develop nonlinear fiber optic applications Two new chapters on the latest developments; Highly Nonlinear Fibers and Quantum Applications Coverage of biomedical applications
Semiconducting Fibers: Preparation, Advances, and Applications is a comprehensive study of the properties and emerging applications of semiconducting fibers. These nanomaterials have unique optoelectronic properties: they are flexible, one-dimensional, and lightweight, and can grow in bulk, thin films, and nano-dimensions (0D, 1D, 2D, 3D). Written by experts from around the world, this book covers the fundamentals of semiconducting fibers, their fabrication, and emerging applications in electronics, optoelectronics, energy, and healthcare. Various approaches to fabricating semiconducting fibers, their characteristics, and the working principles of nano-dimensional devices are covered. Key features: Expert scientists across the world present state-of-the-art progress on semiconducting fibers for emerging applications, including flexible and wearable electronics Provides details of novel methods and advanced technologies used in energy applications of semiconducting fibers Provides fundamentals of electrochemical behavior and their understanding of optoelectronics, photovoltaics, batteries, fuel cells, sensors, and supercapacitors Presents fabrication, characterization, and applications of semiconducting fibers for energy conversion and storage This book will be a key resource for students, academics, and industry professionals interested in the fabrication, device technologies, and applications of semiconducting fibers.
This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.
This book presents a comprehensive account of the recent advances and research in optical fiber technology. It covers a broad spectrum of topics in special areas of optical fiber technology. The book highlights the development of fiber lasers, optical fiber applications in medical, imaging, spectroscopy and measurement, new optical fibers and sensors. This is an essential reference for researchers working in optical fiber researches and for industrial users who need to be aware of current developments in fiber lasers, sensors and other optical fiber applications.
Guided Wave Optical Components and Devices provides a comprehensive, lucid, and clear introduction to the world of guided wave optical components and devices. Bishnu Pal has collaborated with some of the greatest minds in optics to create a truly inclusive treatise on this contemporary topic. Written by leaders in the field, this book delivers cutting-edge research and essential information for professionals, researchers, and students on emerging topics like microstructured fibers, broadband fibers, polymer fiber components and waveguides, acousto-optic interactions in fibers, higher order mode fibers, nonlinear and parametric process in fibers, revolutionary effects of erbium doped and Raman fiber amplifiers in DWDM and CATV networks, all-fiber network branching component technology platforms like fused fiber couplers, fiber gratings, and side-polished fiber half-couplers, arrayed waveguides, optical MEMS, fiber sensing technologies including safety, civil structural health monitoring, and gyroscope applications. - Accessible introduction to wide range of topics relating to established and emerging optical components - Single-source reference for graduate students in optical engineering and newcomer practitioners, focused on components - Extensive bibliographical information included so readers can get a broad introduction to a variety of optical components and their applications in an optical network
Offers an overview of state of the art passive macromodeling techniques with an emphasis on black-box approaches This book offers coverage of developments in linear macromodeling, with a focus on effective, proven methods. After starting with a definition of the fundamental properties that must characterize models of physical systems, the authors discuss several prominent passive macromodeling algorithms for lumped and distributed systems and compare them under accuracy, efficiency, and robustness standpoints. The book includes chapters with standard background material (such as linear time-invariant circuits and systems, basic discretization of field equations, state-space systems), as well as appendices collecting basic facts from linear algebra, optimization templates, and signals and transforms. The text also covers more technical and advanced topics, intended for the specialist, which may be skipped at first reading. Provides coverage of black-box passive macromodeling, an approach developed by the authors Elaborates on main concepts and results in a mathematically precise way using easy-to-understand language Illustrates macromodeling concepts through dedicated examples Includes a comprehensive set of end-of-chapter problems and exercises Passive Macromodeling: Theory and Applications serves as a reference for senior or graduate level courses in electrical engineering programs, and to engineers in the fields of numerical modeling, simulation, design, and optimization of electrical/electronic systems. Stefano Grivet-Talocia, PhD, is an Associate Professor of Circuit Theory at the Politecnico di Torino in Turin, Italy, and President of IdemWorks. Dr. Grivet-Talocia is author of over 150 technical papers published in international journals and conference proceedings. He invented several algorithms in the area of passive macromodeling, making them available through IdemWorks. Bjørn Gustavsen, PhD, is a Chief Research Scientist in Energy Systems at SINTEF Energy Research in Trondheim, Norway. More than ten years ago, Dr. Gustavsen developed the original version of the vector fitting method with Prof. Semlyen at the University of Toronto. The vector fitting method is one of the most widespread approaches for model extraction. Dr. Gustavsen is also an IEEE fellow.
The most complete, one-stop reference for fiber optic sensor theory and application Optical Fiber Sensors: Fundamentals for Development of Optimized Devices constitutes the most complete, comprehensive, and up-to-date reference on the development of optical fiber sensors. Edited by two respected experts in the field and authored by experienced engineers and scientists, the book acts as a guide and a reference for an audience ranging from graduate students to researchers and engineers in the field of fiber optic sensors. The book discusses the fundamentals and foundations of fiber optic sensor technology and provides real-world examples to illuminate and illustrate the concepts found within. In addition to the basic concepts necessary to understand this technology, Optical Fiber Sensors includes chapters on: Distributed sensing with Rayleigh, Raman and Brillouin scattering methods Biomechanical sensing Gas and volatile organic compound sensors Application of nanotechnology to optical fiber sensors Health care and clinical diagnosis And others Graduate students as well as professionals who work with optical fiber sensors will find this volume to be an indispensable resource and reference.
Labs on Chip: Principles, Design and Technology provides a complete reference for the complex field of labs on chip in biotechnology. Merging three main areas— fluid dynamics, monolithic micro- and nanotechnology, and out-of-equilibrium biochemistry—this text integrates coverage of technology issues with strong theoretical explanations of design techniques. Analyzing each subject from basic principles to relevant applications, this book: Describes the biochemical elements required to work on labs on chip Discusses fabrication, microfluidic, and electronic and optical detection techniques Addresses planar technologies, polymer microfabrication, and process scalability to huge volumes Presents a global view of current lab-on-chip research and development Devotes an entire chapter to labs on chip for genetics Summarizing in one source the different technical competencies required, Labs on Chip: Principles, Design and Technology offers valuable guidance for the lab-on-chip design decision-making process, while exploring essential elements of labs on chip useful both to the professional who wants to approach a new field and to the specialist who wants to gain a broader perspective.