Download Free Signals And Systems Primer With Matlab Book in PDF and EPUB Free Download. You can read online Signals And Systems Primer With Matlab and write the review.

Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level. Adaptive Filtering Primer with MATLAB® clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB® functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage. With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB® is an ideal companion for quick reference and a perfect, concise introduction to the field.
Digital Signal Processing:A Primer with MATLAB® provides excellent coverage of discrete-time signals and systems. At the beginning of each chapter, an abstract states the chapter objectives. All principles are also presented in a lucid, logical, step-by-step approach. As much as possible, the authors avoid wordiness and detail overload that could hide concepts and impede understanding. In recognition of requirements by the Accreditation Board for Engineering and Technology (ABET) on integrating computer tools, the use of MATLAB® is encouraged in a student-friendly manner. MATLAB is introduced in Appendix C and applied gradually throughout the book. Each illustrative example is immediately followed by practice problems along with its answer. Students can follow the example step-by-step to solve the practice problems without flipping pages or looking at the end of the book for answers. These practice problems test students' comprehension and reinforce key concepts before moving onto the next section. Toward the end of each chapter, the authors discuss some application aspects of the concepts covered in the chapter. The material covered in the chapter is applied to at least one or two practical problems. It helps students see how the concepts are used in real-life situations. Also, thoroughly worked examples are given liberally at the end of every section. These examples give students a solid grasp of the solutions as well as the confidence to solve similar problems themselves. Some of hte problems are solved in two or three ways to facilitate a deeper understanding and comparison of different approaches. Designed for a three-hour semester course, Digital Signal Processing:A Primer with MATLAB® is intended as a textbook for a senior-level undergraduate student in electrical and computer engineering. The prerequisites for a course based on this book are knowledge of standard mathematics, including calculus and complex numbers.
Signals and Systems Using MATLAB, Third Edition, features a pedagogically rich and accessible approach to what can commonly be a mathematically dry subject. Historical notes and common mistakes combined with applications in controls, communications and signal processing help students understand and appreciate the usefulness of the techniques described in the text. This new edition features more end-of-chapter problems, new content on two-dimensional signal processing, and discussions on the state-of-the-art in signal processing. - Introduces both continuous and discrete systems early, then studies each (separately) in-depth - Contains an extensive set of worked examples and homework assignments, with applications for controls, communications, and signal processing - Begins with a review on all the background math necessary to study the subject - Includes MATLAB® applications in every chapter
This book provides anyone needing a primer on random signals and processes with a highly accessible introduction to these topics. It assumes a minimal amount of mathematical background and focuses on concepts, related terms and interesting applications to a variety of fields. All of this is motivated by numerous examples implemented with MATLAB, as well as a variety of exercises at the end of each chapter.
Transforms and Applications Primer for Engineers with Examples and MATLAB® is required reading for engineering and science students, professionals, and anyone working on problems involving transforms. This invaluable primer contains the most essential integral transforms that both practicing engineers and students need to understand. It provides a large number of examples to explain the use of transforms in different areas, including circuit analysis, differential equations, signals and systems, and mechanical vibrations. Includes an appendix with suggestions and explanations to help you optimize your use of MATLAB Laplace and Fourier transforms are by far the most widely used and most useful of all integral transforms, so they are given a more extensive treatment in this book, compared to other texts that include them. Offering numerous MATLAB functions created by the author, this comprehensive book contains several appendices to complement the main subjects. Perhaps the most important feature is the extensive tables of transforms, which are provided to supplement the learning process. This book presents advanced material in a format that makes it easier to understand, further enhancing its immense value as a teaching tool for engineers and research scientists in academia and industry, as well as students in science and engineering.
Drawing on the author's 25+ years of teaching experience, Signals and Systems: A MATLAB Integrated Approach presents a novel and comprehensive approach to understanding signals and systems theory. Many texts use MATLAB as a computational tool, but Alkin's text employs MATLAB both computationally and pedagogically to provide interactive, visual rein
Signals and Systems Primer with MATLAB® equally emphasizes the fundamentals of both analog and digital signals and systems. To ensure insight into the basic concepts and methods, the text presents a variety of examples that illustrate a wide range of applications, from microelectromechanical to worldwide communication systems. It also provides MATLAB functions and procedures for practice and verification of these concepts. Taking a pedagogical approach, the author builds a solid foundation in signal processing as well as analog and digital systems. The book first introduces orthogonal signals, linear and time-invariant continuous-time systems, discrete-type systems, periodic signals represented by Fourier series, Gibbs's phenomenon, and the sampling theorem. After chapters on various transforms, the book discusses analog filter design, both finite and infinite impulse response digital filters, and the fundamentals of random digital signal processing, including the nonparametric spectral estimation. The final chapter presents different types of filtering and their uses for random digital signal processing, specifically, the use of Wiener filtering and least mean squares filtering. Balancing the study of signals with system modeling and interactions, this text will help readers accurately develop mathematical representations of systems.
Signals, Systems, Transforms, and Digital Signal Processing with MATLAB® has as its principal objective simplification without compromise of rigor. Graphics, called by the author, "the language of scientists and engineers", physical interpretation of subtle mathematical concepts, and a gradual transition from basic to more advanced topics are meant to be among the important contributions of this book. After illustrating the analysis of a function through a step-by-step addition of harmonics, the book deals with Fourier and Laplace transforms. It then covers discrete time signals and systems, the z-transform, continuous- and discrete-time filters, active and passive filters, lattice filters, and continuous- and discrete-time state space models. The author goes on to discuss the Fourier transform of sequences, the discrete Fourier transform, and the fast Fourier transform, followed by Fourier-, Laplace, and z-related transforms, including Walsh–Hadamard, generalized Walsh, Hilbert, discrete cosine, Hartley, Hankel, Mellin, fractional Fourier, and wavelet. He also surveys the architecture and design of digital signal processors, computer architecture, logic design of sequential circuits, and random signals. He concludes with simplifying and demystifying the vital subject of distribution theory. Drawing on much of the author’s own research work, this book expands the domains of existence of the most important transforms and thus opens the door to a new world of applications using novel, powerful mathematical tools.
Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.