Download Free Signal Processing Driven Machine Learning Techniques For Cardiovascular Data Processing Book in PDF and EPUB Free Download. You can read online Signal Processing Driven Machine Learning Techniques For Cardiovascular Data Processing and write the review.

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series
Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
This practical book is the first one-stop resource to offer a thorough, up-to-date treatment of the techniques and methods used in electrocardiogram (ECG) data analysis, from fundamental principles to the latest tools in the field. The book places emphasis on the selection, modeling, classification, and interpretation of data based on advanced signal processing and artificial intelligence techniques.
With the availability of big image datasets and state-of-the-art computing hardware, data-driven machine learning approaches, particularly deep learning, have been used in numerous medical image (CT-scans, MRI, PET, SPECT, etc..) computing tasks, ranging from image reconstruction, super-resolution, segmentation, registration all the way to disease classification and survival prediction. However, training such high-precision approaches often require large amounts of data to be collected and labelled and high-capacity graphics processing units (GPUs) installed, which are resource intensive and hence not always practical. Other hurdles such as the generalization ability to unseen new data and difficulty to interpret and explain can prevent their deployment to those clinical applications which deem such abilities imperative.
Intelligence-Based Cardiology and Cardiac Surgery: Artificial Intelligence and Human Cognition in Cardiovascular Medicine provides a comprehensive survey of artificial intelligence concepts and methodologies with real-life applications in cardiovascular medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and data science domains. The book's content consists of basic concepts of artificial intelligence and human cognition applications in cardiology and cardiac surgery. This portfolio ranges from big data, machine and deep learning, cognitive computing and natural language processing in cardiac disease states such as heart failure, hypertension and pediatric heart care. The book narrows the knowledge and expertise chasm between the data scientists, cardiologists and cardiac surgeons, inspiring clinicians to embrace artificial intelligence methodologies, educate data scientists about the medical ecosystem, and create a transformational paradigm for healthcare and medicine. - Covers a wide range of relevant topics from real-world data, large language models, and supervised machine learning to deep reinforcement and federated learning - Presents artificial intelligence concepts and their applications in many areas in an easy-to-understand format accessible to clinicians and data scientists - Discusses using artificial intelligence and related technologies with cardiology and cardiac surgery in a myriad of venues and situations - Delineates the necessary elements for successfully implementing artificial intelligence in cardiovascular medicine for improved patient outcomes - Presents the regulatory, ethical, legal, and financial issues embedded in artificial intelligence applications in cardiology
"Digital Transformation in Healthcare 5.0: IoT, AI, and Digital Twin" provides a comprehensive overview of the integration of cutting-edge technology with healthcare, from the Fourth Industrial Revolution (4IR) to the introduction of IoT, AI, and Digital Twin technologies. This in-depth discussion of the digital revolution expanding the healthcare industry covers a wide range of topics, including digital disruption in healthcare delivery, the impact of 4IR and Health 4.0, e-health services and applications, virtual reality's impact on accessible healthcare delivery, digital twins and dietary health technologies, big data analytics in healthcare systems, machine learning models for cost-effective healthcare delivery systems, affordable healthcare with machine learning, enhanced biomedical signal processing with machine learning, and data-driven AI for information retrieval of biomedical images.
This book covers the latest advancements in the areas of machine learning, computer vision, pattern recognition, computational learning theory, big data analytics, network intelligence, signal processing, and their applications in real world. The topics covered in machine learning involve feature extraction, variants of support vector machine (SVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. The mathematical analysis of computer vision and pattern recognition involves the use of geometric techniques, scene understanding and modeling from video, 3D object recognition, localization and tracking, medical image analysis, and so on. Computational learning theory involves different kinds of learning like incremental, online, reinforcement, manifold, multitask, semi-supervised, etc. Further, it covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. Additionally, it covers the recent developments to network intelligence for analyzing the network information and thereby adapting the algorithms dynamically to improve the efficiency. In the last, it includes the progress in signal processing to process the normal and abnormal categories of real-world signals, for instance signals generated from IoT devices, smart systems, speech, videos, etc., and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), and electromyogram (EMG).
This book presents state-of-the-art optimization algorithms followed by Internet of Things (IoT) fundamentals. The applications of machine learning and IoT are explored, with topics including optimization, algorithms and machine learning in image processing and IoT. Applications of Optimization and Machine Learning in Image Processing and IoT is a complete reference source, providing the latest research findings and solutions for optimization and machine learning algorithms. The chapters examine and discuss the fields of machine learning, IoT and image processing. KEY FEATURES: • Includes fundamental concepts towards advanced applications in machine learning and IoT. • Discusses potential and challenges of machine learning for IoT and optimization • Reviews recent advancements in diverse researches on computer vision, networking and optimization field. • Presents latest technologies such as machine learning in image processing and IoT This book has been written for readers in academia, engineering, IT specialists, researchers, industrial professionals and students, and is a great reference for those just starting out in the field as well as those at an advanced level.
This book provides insights into the Third International Conference on Intelligent Systems and Signal Processing (eISSP 2020) held By Electronics & Communication Engineering Department of G H Patel College of Engineering & Technology, Gujarat, India, during 28–30 December 2020. The book comprises contributions by the research scholars and academicians covering the topics in signal processing and communication engineering, applied electronics and emerging technologies, Internet of Things (IoT), robotics, machine learning, deep learning and artificial intelligence. The main emphasis of the book is on dissemination of information, experience and research results on the current topics of interest through in-depth discussions and contribution of researchers from all over world. The book is useful for research community, academicians, industrialists and postgraduate students across the globe.