Download Free Signal Processing And Analysis Techniques For Nuclear Quadrupole Resonance Spectroscopy Book in PDF and EPUB Free Download. You can read online Signal Processing And Analysis Techniques For Nuclear Quadrupole Resonance Spectroscopy and write the review.

This book is about improving prohibited substances detection using the nuclear quadrupole resonance (NQR) technique at security checkpoints. The book proposes multiple signal processing and analysis techniques for improving detection of dangerous or contraband substances, such as explosives, narcotics, or toxic substances. Also, several hardware solutions are described and implemented in a custom-designed NQR spectrometer. A new approach to NQR signal detection is introduced using artificial intelligence/deep learning techniques. The book will be useful for for researchers and practitioners in the areas of electrical engineering, signal processing and analysis, applied spectroscopy, as well as for security or laboratory equipment manufacturers.
Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to build a multichannel system necessary to cover a wide range of target substances. Moreover, substances fully screened by metallic enclosures, etc. are difficult to detect. A workshop was held at St Petersburg in July 2008 in an attempt to solve these problems and make NQR the universal technique for the detection of bombs regardless of type. This book presents the essentials of the papers given there.
Detection of concealed explosives is a notoriously difficult problem, and many different approaches have been proposed to solve this problem. Nuclear quadrupole resonance (NQR) is unique in many ways. It operates in a safe AM radio frequency range, and it can remotely detect unique “fingerprint” (NQR spectrum) of many explosives, such as TNT or RDX. As such, the detection of target does not depend on the shape or material of the container, or the presence of metallic object such as triggers etc. Spectra of chemically similar compounds differ enough that their presence never causes interference or false alarms. Unfortunately, widespread use is prevented due to low sensitivity, radiofrequency interference from the noisy environment, and inability to detect liquid explosives. This book presents current state of the art of the attempts to overcome NQR sensitivity problem, either by increasing the strengths of signals generated, or by increasing the specificity of the technique through a better understanding of the factors that affect the quadrupolar parameters of specific explosives. The use of these specific quadrupolar parameters is demonstrated on signal processing techniques that can detect weak signals, which are hidden in a noisy background. The problem of differentiation of liquid explosives and benign liquids in closed containers is approached by measurements of different nuclear magnetic resonance (NMR) parameters. As shown, a couple of solutions has reached a prototype stage and could find their use in a near future.
The use of 14N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing 14N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The 14N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.
"Cover-to-cover reading of Plastics Additives, Advanced Industrial Analysis, is recommended for both professional analysts and plastics technologists. Professor Bart’s prose style is easy to read. A professional background in analytical chemistry is not assumed. Particularly valuable is the trove of good advice as to which approach might be best in a given situation. Every department with a serious interest in additive / property relations should invest in a copy.” -- PMAD Newsletter. This industrially relevant and up-to-date resource deals with all established and emerging analytical methods for in-polymer additive analysis of plastics formulations. Quality assurance and industrial troubleshooting all benefit from direct analysis modes. Plastics Additives comprises detailed coverage of solid-state spectroscopy, thermal analysis and pyrolysis, laser techniques, surface studies and microanalysis along with process analytics, quantitative analysis and modern method development and validation applied to additives in polymers. The book is organised for quick and easy reference and is extensively illustrated with over 200 figures, 300 flow diagrams and tables to facilitate rapid understanding of this topic, and it contains 4000 references. Emphasis is on understanding (principles and characteristics) and industrial applicability.
Advances in Diagnostics and Screening Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Magnetic Resonance Angiography. The editors have built Advances in Diagnostics and Screening Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Magnetic Resonance Angiography in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Diagnostics and Screening Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.