Download Free Signal Detection And Estimation Book in PDF and EPUB Free Download. You can read online Signal Detection And Estimation and write the review.

The purpose of this book is to introduce the reader to the basic theory of signal detection and estimation. It is assumed that the reader has a working knowledge of applied probabil ity and random processes such as that taught in a typical first-semester graduate engineering course on these subjects. This material is covered, for example, in the book by Wong (1983) in this series. More advanced concepts in these areas are introduced where needed, primarily in Chapters VI and VII, where continuous-time problems are treated. This book is adapted from a one-semester, second-tier graduate course taught at the University of Illinois. However, this material can also be used for a shorter or first-tier course by restricting coverage to Chapters I through V, which for the most part can be read with a background of only the basics of applied probability, including random vectors and conditional expectations. Sufficient background for the latter option is given for exam pIe in the book by Thomas (1986), also in this series.
This textbook provides a comprehensive and current understanding of signal detection and estimation, including problems and solutions for each chapter. Signal detection plays an important role in fields such as radar, sonar, digital communications, image processing, and failure detection. The book explores both Gaussian detection and detection of Markov chains, presenting a unified treatment of coding and modulation topics. Addresses asymptotic of tests with the theory of large deviations, and robust detection. This text is appropriate for students of Electrical Engineering in graduate courses in Signal Detection and Estimation.
This newly revised edition of a classic Artech House book provides you with a comprehensive and current understanding of signal detection and estimation. Featuring a wealth of new and expanded material, the second edition introduces the concepts of adaptive CFAR detection and distributed CA-CFAR detection. The book provides complete explanations of the mathematics you need to fully master the material, including probability theory, distributions, and random processes.
This volume provides an introduction to signal-detection theory, a subject fundamental to the design of detectors of weak signals in the presence of random noise, and, in particular, to the design of optimal and near optimal receivers of communication, radar, sonar and optical signals.
"For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.
Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications and over 80 analytical and computational end-of-chapter problems make this an ideal resource for both graduate students and professional engineers.
This book contains a number of problems of signal detection theory. A generalized observation model for signal detection problems is included. The model includes several interesting and common special cases such as those describing additive noise, multiplicative noise, and signal-dependent noise. The model can also describe composite signals in addition to the usual known (deterministic) signals and random (stochastic) signals. Locally optimum (LO) and locally optimum rank (LOR) detectors for known and random signals in the model are discussed, and original results are obtained. Other approaches to detection of signals are also discussed.
Quantum Detection and Estimation Theory
Detailed descriptions of detection, direction-finding, and signal-estimation methods, using consistent formalisms and notation, emphasizing HF antenna array sensing applications. Adaptive antenna array technology encompasses many powerful interference suppression approaches that exploit spatial differences among signals reaching a radio receiver system. Today, worldwide propagation phenomenology occurring in the High Frequency (HF) radio regime has made such interference common. In this book, Jay Sklar, a longtime researcher at MIT Lincoln Laboratory, presents detailed descriptions of detection, direction-finding, and signal-estimation methods applicable at HF, using consistent formalisms and notation. Modern electronic system technology has made many of these techniques affordable and practical; the goal of the book is to offer practicing engineers a comprehensive and self-contained reference that will encourage more widespread application of these approaches. The book is based on the author's thirty years of managing MIT Lincoln Laboratory work on the application of adaptive antenna array technologies to the sensing of HF communication signals. After an overview of HF propagation phenomenology, communication signal formats, and HF receiver architectural approaches, Sklar describes the HF propagation environment in more detail; introduces important modulation approaches and signaling protocols used at HF; discusses HF receiver system architectural features; and addresses signal processor architecture and its implementation. He then presents the technical foundation for the book: the vector model for a signal received at an adaptive array antenna. He follows this with discussions of actual signal processing techniques for detection and direction finding, including specific direction-finding algorithms; geolocation techniques; and signal estimation.