Download Free Siegel Modular Forms And L Functions Of Exponential Sums Book in PDF and EPUB Free Download. You can read online Siegel Modular Forms And L Functions Of Exponential Sums and write the review.

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.
This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L -functions, many of which are closely related to Arakawa''s works. This collection of papers illustrates Arakawa''s contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operators (H Aoki); MarsdenOCoWeinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S BAcherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K-I Hashimoto); Skew-Holomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O (2 n) / (O (n) x O (n) ) (Y Hironaka & F Sato); KoecherOCoMaa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L -Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L -Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp (1, q ) (Arakawa''s Results and Recent Progress) (H-A Narita); On Modular Forms for the Paramodular Groups (B Roberts & R Schmidt); SL(2, Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics."
This volume consists of twenty articles stemming from presentations given at the 2023 Integers Conference. They represent a variety of active areas of research in combinatorial number theory, including additive number theory, multiplicative number theory, elementary number theory, the theory of partitions, Ramsey theory, sequences, algebraic combinatorics, enumerative combinatorics, and Diophantine equations.
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.
Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; class number formula for positive definite binary quadratic forms; congruences between some class numbers and Bernoulli numbers; simple zeta functions of prehomogeneous vector spaces; Hurwitz numbers; Barnes multiple zeta functions and their special values; the functional equation of the doub le zeta functions; and poly-Bernoulli numbers. An appendix by Don Zagier on curious and exotic identities for Bernoulli numbers is also supplied. This book will be enjoyable both for amateurs and for professional researchers. Because the logical relations between the chapters are loosely connected, readers can start with any chapter depending on their interests. The expositions of the topics are not always typical, and some parts are completely new.
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
The authors study the non-semisimple terms in the geometric side of the Arthur trace formula for the split symplectic similitude group and the split symplectic group of rank over any algebraic number field. In particular, they express the global coefficients of unipotent orbital integrals in terms of Dedekind zeta functions, Hecke -functions, and the Shintani zeta function for the space of binary quadratic forms.