Download Free Shortest Path Problem By Minimal Spanning Tree Algorithm Using Bipolar Neutrosophic Numbers Book in PDF and EPUB Free Download. You can read online Shortest Path Problem By Minimal Spanning Tree Algorithm Using Bipolar Neutrosophic Numbers and write the review.

Normally, Minimal Spanning Tree algorithm is used to find the shortest route in a network. Neutrosophic set theory is used when incomplete, inconsistancy and indeterminacy occurs. In this paper, Bipolar Neutrosophic Numbers are used in Minimal Spanning Tree algorithm for finding the shortest path on a network when the distances are inconsistant and indeterminate and it is illustrated by a numerical example.
In this paper, an algorithm for searching the minimum spanning tree (MST) in a network having trapezoidal fuzzy neutrosophic edge weight is presented.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.
In this current era, neutrosophic set theory is a crucial topic to demonstrate the ambiguous information due to existence of three disjunctive components appears in it and it provides a wide range of applications in distinct fields for the researchers. Generally, neutrosophic sets is the extended version of crisp set, fuzzy set and intuitionistic fuzzy sets to focus on the uncertain, hesitant and ambiguous datas of a real life mathematical problem.
Graph theory is a specific concept that has numerous applications throughout many industries. Despite the advancement of this technique, graph theory can still yield ambiguous and imprecise results. In order to cut down on these indeterminate factors, neutrosophic logic has emerged as an applicable solution that is gaining significant attention in solving many real-life decision-making problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. However, empirical research on this specific graph set is lacking. Neutrosophic Graph Theory and Algorithms is a collection of innovative research on the methods and applications of neutrosophic sets and logic within various fields including systems analysis, economics, and transportation. While highlighting topics including linear programming, decision-making methods, and homomorphism, this book is ideally designed for programmers, researchers, data scientists, mathematicians, designers, educators, researchers, academicians, and students seeking current research on the various methods and applications of graph theory.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
The shortest path problem is a topic of increasing interest in various scientific fields. The damage to roads and bridges caused by disasters makes traffic routes that can be accurately expressed become indeterminate. A neutrosophic set is a collection of the truth membership, indeterminacy membership, and falsity membership of the constituent elements. It has a symmetric form and indeterminacy membership is their axis of symmetry.
Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each bipolar neutrosophic number represents an element of the matrix. The matrices are representable multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, especially the composition is a challenging algorithm in terms of coding because there are so many nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.