Download Free Shortcuts To Adiabaticity For Ultracold Gases Book in PDF and EPUB Free Download. You can read online Shortcuts To Adiabaticity For Ultracold Gases and write the review.

In this thesis I explore the possibility of accelerating adiabatic processes for quantum systems. Experiments are performed with a trapped ultracold gas of Rubidium-87 atoms in two distinct regimes: with a one-dimensional thermal gas that can be considered non-interacting, and with a three-dimensional Bose-Einstein condensate for which interactions are dominant. In the first chapter I recall some aspects of the theoretical description and important properties of such gases. The second chapter details the construction of a Bose-Einstein condensation apparatus, mainly composed of two magneto-optical traps and a magnetic trap. In the third chapter this set-up is used to demonstrate that adiabatic processes, in our case, the slow decompression and displacement of the gas, can be dramatically accelerated by using a proper design of the time-dependent parameters of the system. The theoretical treatment is detailed and is not restricted to trapped gases. It may be applied to other physical systems described by either a linear or nonlinear Schrödinger equation containing a time-dependent harmonic potential. The final chapter is theoretical and not directly related to the others. In it I investigate the effect of disorder correlations on one-dimensional Anderson localization. I show that a degenerate mixture of Rubidium-87 and Potassium-41 atoms is well suited to study the localization-delocalization transition predicted by existing models of correlated disorder.
Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts and contain relevant review material and detailed descriptions of important recent developments. International experts Comprehensive articles New developments
This volume of Advances in Chemical Physics is dedicated, by the contributors, to Moshe Shapiro, formerly Canada Research Chair in Quantum Control in the Department of Chemistry at the University of British Columbia and Jacques Mimran Professor of Chemical Physics at the Weizmann Institute, who passed away on December 3, 2013. It focuses primarily on the interaction of light with molecules, one of Moshe's longstanding scientific loves. However, the wide range of topics covered in this volume constitutes but a small part of Moshe's vast range of scientific interests, which are well documented in over 300 research publications and two books.
This thesis describes the experimental realisation and characterisation of three non-trivial trapping geometries for ultracold atoms. The double-well, ring and to some degree shell trap are examples of a highly versatile class of traps called time-averaged adiabatic potentials (TAAPs). In this experiment the TAAPs arise from the combination of three independent magnetic fields; a static quadrupole field dressed by a uniform radio-frequency field is time- averaged by a bias field oscillating in the kHz regime. The result is a very smooth potential, within which ultracold atoms can be evaporatively cooled to quantum degeneracy, and subsequently manipulated into new geometries without destroying the quantum coherence. The vertically offset double-well potential provided the first example of ul- tracold atoms confined in a TAAP. The same potential is used to demonstrate efficient evaporative cooling across the Bose-Einstein condensate (BEC) phase transition using only the Landau-Zener loss mechanism. Switching off the time- averaging fields loads atoms from the double-well TAAP into the rf-dressed shell trap. A characterisation of this potential measured low heating rates and life- times of up to 58 s. With efforts ongoing to increase the trap anisotropy, this potential shows promise for research into the static and rapidly rotating 2D systems. In the presence of a single time-averaging field, the shell geometry is transformed into a ring-shaped trap with an adjustable radius. The ring trap can be controllably tilted and progress towards multiply connected condensates is being made. A rotation scheme to spin up atoms in the ring trap has been demonstrated, presenting the opportunity to investigate the dynamics of super- flow in degenerate quantum gases.
Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.
Ever since the invention of the cesium atomic clock in 1955, quantum frequency standards have seen considerable development over the decades, as a representative of quantum precision measurement. The progress in frequency measurements achieved in the past allowed one to perform quantum precision measurements of other physical and technical quantities with unprecedented precision, whenever they could be traced back to a frequency measurement. Using atomic transitions as frequency reference, quantum frequency standards are far less susceptible to external perturbations, and the identity of microscopic particles allows easy replication of a quantum standard with the same frequency. With laser cooling and trapping, cold atomic ensembles eliminate Doppler shift broadening, and have become the go-to quantum reference when precision and new physics are pursued. The advancement of laser cooling and cold atom physics, in addition to novel physical matter states such as Bose-Einstein Condensation, give rise to new experimental techniques in quantum precision measurement, especially quantum frequency standards, such as cesium fountain clocks dictating the SI second, as well as optical lattice clocks and single-ion optical clocks pushing the frontier of quantum metrology. Other areas of quantum metrology, such as gravitometers and magnetometers, also benefit greatly from cold atoms. For practical applications, quantum frequency standards are usually required to be compact and portable, and thermal atoms in the form of atomic beams or vapor cells are utilized. Commercially available quantum frequency standards such as cesium beam clocks or rubidium clocks have become the cornerstone of navigation and timekeeping. Compact optical clocks based on various laser spectroscopic techniques have also been developed. As researchers strive to break through the limits of accurate quantum measurement and atomic temperature, new fields such as precise measurement, quantum computing and quantum simulation based on cold atoms are further opened up, and challenges still exist to explore new physical phenomena in the field of cold atoms. In honor of Prof. Yiqiu Wang on the occasion of his 90th birthday, the main goal of this Research Topic is to provide a platform to exhibit the recent achievements and reveal the future challenges in quantum precision measurement, as well as studies of cold atom physics with quantum metrology, closely related to the long-term scientific research areas of Prof. Yiqiu Wang. Both Original Research and Review articles are encouraged. Topics of interest to this collection include, but are not limited to: • Quantum precision measurements • Microwave atomic clocks and their applications • Optical frequency standards, laser spectroscopy, and their applications • Quantum measurement based on cold atom • Quantum computation and quantum simulation based on cold atom
This stimulating discussion of a rapidly developing field is divided into two parts. The first features tutorials in textbook style providing self-contained introductions to the various areas relevant to atom chip research. Part II contains research reviews that provide an integrated account of the current state in an active area of research where atom chips are employed, and explore possible routes of future progress. Depending on the subject, the length of the review and the relative weight of the 'review' and 'outlook' parts vary, since the authors include their own personal view and style in their accounts.
The book presents nonlinear, chaotic and fractional dynamics, complex systems and networks, together with cutting-edge research on related topics. The fifteen chapters – written by leading scientists working in the areas of nonlinear, chaotic, and fractional dynamics, as well as complex systems and networks – offer an extensive overview of cutting-edge research on a range of topics, including fundamental and applied research. These include but are not limited to, aspects of synchronization in complex dynamical systems, universality features in systems with specific fractional dynamics, and chaotic scattering. As such, the book provides an excellent and timely snapshot of the current state of research, blending the insights and experiences of many prominent researchers.