Download Free Short Rotation Woody Crop Production Systems For Ecosystem Services And Phytotechnologies Book in PDF and EPUB Free Download. You can read online Short Rotation Woody Crop Production Systems For Ecosystem Services And Phytotechnologies and write the review.

While international efforts in the development of short rotation woody crops (SRWCs) have historically focused on the production of biomass for bioenergy, biofuels, and bioproducts, research and deployment over the past decade has expanded to include broader objectives of achieving multiple ecosystem services. In particular, silvicultural prescriptions developed for SRWCs have been refined to include woody crop production systems for environmental benefits such as carbon sequestration, water quality and quantity, and soil health. In addition, current systems have been expanded beyond traditional fiber production to other environmental technologies that incorporate SRWCs as vital components for phytotechnologies, urban afforestation, ecological restoration, and mine reclamation. In this Special Issue of the journal Forests, we explore the broad range of current research dedicated to our topic: International Short Rotation Woody Crop Production Systems for Ecosystem Services and Phytotechnologies
While international efforts in the development of short rotation woody crops (SRWCs) have historically focused on the production of biomass for bioenergy, biofuels, and bioproducts, research and deployment over the past decade has expanded to include broader objectives of achieving multiple ecosystem services. In particular, silvicultural prescriptions developed for SRWCs have been refined to include woody crop production systems for environmental benefits such as carbon sequestration, water quality and quantity, and soil health. In addition, current systems have been expanded beyond traditional fiber production to other environmental technologies that incorporate SRWCs as vital components for phytotechnologies, urban afforestation, ecological restoration, and mine reclamation. In this Special Issue of the journal Forests, we explore the broad range of current research dedicated to our topic: International Short Rotation Woody Crop Production Systems for Ecosystem Services and Phytotechnologies.
Adaptive Phytoremediation Practices: Resilience to Climate Change discusses current phytoremediation practices under an ever-pressing need for environmental remediation due to increasing pollution in a changing climate. Phytoremediation is increasingly relevant due to plants’ high effectiveness and sustainability during remediation and the ability of potential phytoremediation plants to adapt to changes in climate. Changing climatic conditions cause various biotic and abiotic stresses in plants and thereby negatively affect a plant’s establishment, growth, and yield. Therefore, the integration of suitable climate-resilient plants and adaptive remedial practices along with proper agro-biotechnological interventions is of paramount importance to mitigate the rapidly growing pollution. This book is an important reference for environmental scientists, particularly those working in pollution management and remediation, forming an up-to-date collection of phytoremediation practices that provide sustainable solutions as a holistic approach for carrying out phytoremediation under changing climatic conditions. Provides up-to-date research and understanding on how to design, refine, and implement adaptive phytoremediation practices Focuses on enhancing resilience in plants toward climate change and explanations of the characteristics of resilient plants for adaptive phytoremediation practices in a changing climate Presents methods and solutions for adapting phytoremediation practices to climate change
Soils and Landscape Restoration provides a multidisciplinary synthesis on the sustainable management and restoration of soils in various landscapes. The book presents applicable knowledge of above- and below-ground interactions and biome specific realizations along with in-depth investigations of particular soil degradation pathways. It focuses on severely degraded soils (e.g., eroded, salinized, mined) as well as the restoration of wetlands, grasslands and forests. The book addresses the need to bring together current perspectives on land degradation and restoration in soil science and restoration ecology to better incorporate soil-based information when restoration plans are formulated. Incudes a chapter on climate change and novel ecosystems, thus collating the perspective of soil scientists and ecologists on this consequential and controversial topic Connects science to international policy and practice Includes summaries at the end of each chapter to elucidate principles and key points
Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.
For over a decade, researchers have used small-scale research plots to assist development and selection of high yielding, pest-resistant clones of fast-growing hardwoods such as hybrid poplar (Populus spp.). Substantial advances have been made in the techniques and criteria for screening species and selecting clones. Data from these research plots indicate that the ultimate performance of selected clones is dependent upon variable factors in the environment. Until now, researchers could only determine the suitability of a given site for such clones, not the actual yield potential of the site. Recently in the north central US, several clones were planted on larger-than-research-scale plots on private land recontracted under the Conservation Reserve Program (CRP). The historical database could not provide a framework which would allow producers to predict the yield potential of a particular clone on a specific site. Through a systematic combination of clonal trials on experimental research-scale plots and operational plantings on 50 to 100 acre agricultural-scale field plots, it may be possible to develop yield functions or site quality equations which would predict biomass yields at rotation for selected clones. Such estimates will (1) reduce the probability of planting failure, (2) allow maximum expression of the genetic potential of selected superior clones, and thus (3) facilitate accurate economic planning for both the producer and conversion facility manager.