Download Free Short Pulse Generation With Semiconductor Lasers Book in PDF and EPUB Free Download. You can read online Short Pulse Generation With Semiconductor Lasers and write the review.

This book covers the physics, technology and applications of short pulse laser sources that generate pulses with durations of only a few optical cycles. The basic design considerations for the different systems such as lasers, parametric amplifiers and external compression techniques which have emerged over the last decade are discussed to give researchers and graduate students a thorough introduction to this field. The existence of these sources has opened many new fields of research that were not possible before. These are UV and EUV generation from table-top systems using high-harmonic generation, frequency metrology enabling optical frequency counting, high-resolution optical coherence tomography, strong-field ultrafast solid-state processes and ultrafast spectroscopy, to mention only a few. Many new applications will follow. The book attempts to give a comprehensive, while not excessive, introduction to this exciting new field that serves both experienced researchers and graduate students entering the field. The first half of the book covers the current physical principles, processes and design guidelines to generate pulses in the optical range comprising only a few cycles of light. Such as the generation of relatively low energy pulses at high repetition rates directly from the laser, parametric generation of medium energy pulses and high-energy pulses at low repetition rates using external compression in hollow fibers. The applications cover the revolution in frequency metrology and high-resolution laser spectroscopy to electric field synthesis in the optical range as well as the emerging field of high-harmonic generation and attosecond science, high-resolution optical imaging and novel ultrafast dynamics in semiconductors. These fields benefit from the strong electric fields accompanying these pulses in solids and gases during events comprising only a few cycles of light.
This timely publication presents a review of the most recent developments in the field of Semiconductor Disk Lasers. Covering a wide range of key topics, such as operating principles, thermal management, nonlinear frequency conversion, semiconductor materials, short pulse generation, electrical pumping, and laser applications, the book provides readers with a comprehensive account of the fundamentals and latest advances in this rich and diverse field. In so doing, it brings together contributions from world experts at major collaborative research centers in Europe and the USA. Each chapter includes a tutorial style introduction to the selected topic suitable for postgraduate students and scientists with a basic background in optics - making it of interest to a wide range of scientists, researchers, engineers and physicists working and interested in this rapidly developing field. It will also serve as additional reading for students in the field.
This is the second edition of this advanced textbook written for scientists who require further training in femtosecond science. Four years after pub- cation of the ?rst edition, femtosecond science has overcome new challenges and new application ?elds have become mature. It is necessary to take into account these new developments. Two main topics merged during this period that support important scienti?c activities: attosecond pulses are now gen- ated in the X-UV spectral domain, and coherent control of chemical events is now possible by tailoring the shape of femtosecond pulses. To update this advanced textbook, it was necessary to introduce these ?elds; two new ch- ters are in this second edition: “Coherent Control in Atoms, Molecules, and Solids”(Chap.11)and“AttosecondPulses”(Chap.12)withwell-documented references. Some changes, addenda, and new references are introduced in the ?rst edition’s ten original chapters to take into account new developments and updatethisadvancedtextbookwhichistheresultofascienti?cadventurethat started in 1991. At that time, the French Ministry of Education decided that, in view of the growing importance of ultrashort laser pulses for the national scienti?c community, a Femtosecond Centre should be created in France and devoted to the further education of scientists who use femtosecond pulses as a research tool and who are not specialists in lasers or even in optics.
This book covers the device physics of semiconductor lasers in five chapters written by recognized experts in this field. The volume begins by introducing the basic mechanisms of optical gain in semiconductors and the role of quantum confinement in modern quantum well diode lasers. Subsequent chapters treat the effects of built-in strain, one of the important recent advances in the technology of these lasers, and the physical mechanisms underlying the dynamics and high speed modulation of these devices. The book concludes with chapters addressing the control of photon states in squeezed-light and microcavity structures, and electron states in low dimensional quantum wire and quantum dot lasers. The book offers useful information for both readers unfamiliar with semiconductor lasers, through the introductory parts of each chapter, as well as a state-of-the-art discussion of some of the most advanced semiconductor laser structures, intended for readers engaged in research in this field. This book may also serve as an introduction for the companion volume, Semiconductor Lasers II: Materials and Structures, which presents further details on the different material systems and laser structures used for achieving specific diode laser performance features. - Introduces the reader to the basics of semiconductor lasers - Covers the fundamentals of lasing in semiconductors, including quantum confined and microcavity structures - Beneficial to readers interested in the more general aspects of semiconductor physics and optoelectronic devices, such as quantum confined heterostructures and integrated optics - Each chapter contains a thorough introduction to the topic geared toward the non-expert, followed by an in-depth discussion of current technology and future trends - Useful for professionals engaged in research and development - Contains numerous schematic and data-containing illustrations
Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging
The papers in this comprehensive volume survey many recent innovations in ultrashort pulse generation, and review the state of the art in compact, modelocked laser systems, discussing both their operational principles and potential applications. The book first covers the theory of short optical pulse generation by modelocking. Then, contributors discuss modelocking techniques in different types of lasers: solid state; diode-pumped; fiber; surface emitting semiconductor lasers; external cavity semiconductor lasers; hybrid soliton pulse sources; and monolithic colliding pulse modelocked diode lasers. Presenting both theoretical and experimental aspects throughout, this book will be invaluable to anyone interested in short pulse laser systems, and particularly to researchers involved in high speed communications or the investigation of ultrafast phenomena.
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. - Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications - Demonstrates how to connect different classes of material to specific applications - Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities
Since its invention in 1962, the semiconductor laser has come a long way. Advances in material purity and epitaxial growth techniques have led to a variety of semiconductor lasers covering a wide wavelength range of 0. 3- 100 ~m. The development during the 1970s of GaAs semiconductor lasers, emitting in the near-infrared region of 0. 8-0. 9 ~m, resulted in their use for the first generation of optical fiber communication systems. However, to take advantage oflow losses in silica fibers occurring around 1. 3 and 1. 55 ~m, the emphasis soon shifted toward long-wavelength semiconductor lasers. The material system of choice in this wavelength range has been the quaternary alloy InGaAsP. During the last five years or so, the intense development effort devoted to InGaAsP lasers has resulted in a technology mature enough that lightwave transmission systems using InGaAsP lasers are currently being deployed throughout the world. This book is intended to provide a comprehensive account of long-wave length semiconductor lasers. Particular attention is paid to InGaAsP lasers, although we also consider semiconductor lasers operating at longer wave lengths. The objective is to provide an up-to-date understanding of semicon ductor lasers while incorporating recent research results that are not yet available in the book form. Although InGaAsP lasers are often used as an example, the basic concepts discussed in this text apply to all semiconductor lasers, irrespective of their wavelengths.