Download Free Shipboard Power Systems Design And Verification Fundamentals Book in PDF and EPUB Free Download. You can read online Shipboard Power Systems Design And Verification Fundamentals and write the review.

The only book that covers fundamental shipboard design and verification concepts from individual devices to the system level Shipboard electrical system design and development requirements are fundamentally different from utility-based power generation and distribution requirements. Electrical engineers who are engaged in shipbuilding must understand various design elements to build both safe and energy-efficient power distribution systems. This book covers all the relevant technologies and regulations for building shipboard power systems, which include commercial ships, naval ships, offshore floating platforms, and offshore support vessels. In recent years, offshore floating platforms have been frequently discussed in exploring deep-water resources such as oil, gas, and wind energy. This book presents step-by-step shipboard electrical system design and verification fundamentals and provides information on individual electrical devices and practical design examples, along with ample illustrations to back them. In addition, Shipboard Power Systems Design and Verification Fundamentals: Presents real-world examples and supporting drawings for shipboard electrical system design Includes comprehensive coverage of domestic and international rules and regulations (e.g. IEEE 45, IEEE 1580) Covers advanced devices such as VFD (Variable Frequency Drive) in detail This book is an important read for all electrical system engineers working for shipbuilders and shipbuilding subcontractors, as well as for power engineers in general.
The only book that covers fundamental shipboard design and verification concepts from individual devices to the system level Shipboard electrical system design and development requirements are fundamentally different from utility-based power generation and distribution requirements. Electrical engineers who are engaged in shipbuilding must understand various design elements to build both safe and energy-efficient power distribution systems. This book covers all the relevant technologies and regulations for building shipboard power systems, which include commercial ships, naval ships, offshore floating platforms, and offshore support vessels. In recent years, offshore floating platforms have been frequently discussed in exploring deep-water resources such as oil, gas, and wind energy. This book presents step-by-step shipboard electrical system design and verification fundamentals and provides information on individual electrical devices and practical design examples, along with ample illustrations to back them. In addition, Shipboard Power Systems Design and Verification Fundamentals: Presents real-world examples and supporting drawings for shipboard electrical system design Includes comprehensive coverage of domestic and international rules and regulations (e.g. IEEE 45, IEEE 1580) Covers advanced devices such as VFD (Variable Frequency Drive) in detail This book is an important read for all electrical system engineers working for shipbuilders and shipbuilding subcontractors, as well as for power engineers in general.
An in-depth exploration of shipboard power generation and distribution system design that utilizes variable frequency drives The variable frequency drive (VFD) application is a proven technology for shore-based applications. However, shore-based VFDs often are unsuitable for shipboard applications because the power generation and distribution fundamentals are completely different. VFD Challenges for Shipboard Electrical Power System Design explores the problems presented by variable frequency drives as they are applied in shipboard power generation and distribution system design and offers solutions for meeting these challenges. VFDs with configurations such as six pulse drive, 12 pulse drive, 18 pulse drive, active front end, pulse width modulation and many others generate many different levels of harmonics. These harmonics are often much higher than the regulations allow. This book covers a range of techniques used to provide ships with efficient energy that minimizes mechanical and electrical stress. This important book: Offers a comparison of shipboard grounding and VFD grounding Contains an analysis of the VFD effect in terms of shipboard power quality Includes specific examples of Department of Transportation standards regarding VFDs Written for commercial and naval engineers designing ships and/or shipboard power systems, VFD Challenges for Shipboard Electrical Power System Design is a comprehensive resource that addresses the problems and solutions associated with shipboard applications of VFD.
Presents an expanded range of topics, and new developments in shipboard electrical power Offers solutions for meeting the increasing demand for large, fast, efficient, and reconfigurable ships Utilizes state-of-the-art power systems analysis software to illustrate and solve practical problems Compiles critical information on Power System Design, Analysis, and Operation in a single volume Provides math review sections, worked examples, and numerous chapter problems
Shipboard Propulsion, Power Electronics, and Ocean Energy fills the need for a comprehensive book that covers modern shipboard propulsion and the power electronics and ocean energy technologies that drive it. With a breadth and depth not found in other books, it examines the power electronics systems for ship propulsion and for extracting ocean energy, which are mirror images of each other. Comprised of sixteen chapters, the book is divided into four parts: Power Electronics and Motor Drives explains basic power electronics converters and variable-frequency drives, cooling methods, and quality of power Electric Propulsion Technologies focuses on the electric propulsion of ships using recently developed permanent magnet and superconducting motors, as well as hybrid propulsion using fuel cell, photovoltaic, and wind power Renewable Ocean Energy Technologies explores renewable ocean energy from waves, marine currents, and offshore wind farms System Integration Aspects discusses two aspects—energy storage and system reliability—that are essential for any large-scale power system This timely book evolved from the author’s 30 years of work experience at General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching at the U.S. Merchant Marine Academy. As a textbook, it is ideal for an elective course at marine and naval academies with engineering programs. It is also a valuable reference for commercial and military shipbuilders, port operators, renewable ocean energy developers, classification societies, machinery and equipment manufacturers, researchers, and others interested in modern shipboard power and propulsion systems. The information provided herein does not necessarily represent the view of the U.S. Merchant Marine Academy or the U.S. Department of Transportation. This book is a companion to Shipboard Electrical Power Systems (CRC Press, 2011), by the same author.
IEEE 45™-2002 is an excellent standard, which is widely used for selecting shipboard electrical and electronic system equipment and its installation. The standard is a living document often interpreted differently by different users. Handbook to IEEE Standard 45™: A Guide to Electrical Installations on Shipboard provides a detailed background of the changes in IEEE Std 45-2002 and the reasoning behind the changes as well as explanation and adoption of other national and international standards. It contains the complete text of IEEE 45™-2002 relevant clauses, along with explanatory commentary consisting of: - Recommendation intent and interpretation - Historical perspective - Application - Supporting illustrations, drawings and tables This Handbook provides necessary technical details in a simplified form to enhance understanding of the requirements for technical and non-technical people in the maritime industry.
Until now, there has been a lack of a complete knowledge base to fully comprehend Low power (LP) design and power aware (PA) verification techniques and methodologies and deploy them all together in a real design verification and implementation project. This book is a first approach to establishing a comprehensive PA knowledge base. LP design, PA verification, and Unified Power Format (UPF) or IEEE-1801 power format standards are no longer special features. These technologies and methodologies are now part of industry-standard design, verification, and implementation flows (DVIF). Almost every chip design today incorporates some kind of low power technique either through power management on chip, by dividing the design into different voltage areas and controlling the voltages, through PA dynamic and PA static verification, or their combination. The entire LP design and PA verification process involves thousands of techniques, tools, and methodologies, employed from the r egister transfer level (RTL) of design abstraction down to the synthesis or place-and-route levels of physical design. These techniques, tools, and methodologies are evolving everyday through the progression of design-verification complexity and more intelligent ways of handling that complexity by engineers, researchers, and corporate engineering policy makers.
Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.