Download Free Shepherding Uxvs For Human Swarm Teaming Book in PDF and EPUB Free Download. You can read online Shepherding Uxvs For Human Swarm Teaming and write the review.

This book draws inspiration from natural shepherding, whereby a farmer utilizes sheepdogs to herd sheep, to inspire a scalable and inherently human friendly approach to swarm control. The book discusses advanced artificial intelligence (AI) approaches needed to design smart robotic shepherding agents capable of controlling biological swarms or robotic swarms of unmanned vehicles. These smart shepherding agents are described with the techniques applicable to the control of Unmanned X Vehicles (UxVs) including air (unmanned aerial vehicles or UAVs), ground (unmanned ground vehicles or UGVs), underwater (unmanned underwater vehicles or UUVs), and on the surface of water (unmanned surface vehicles or USVs). This book proposes how smart ‘shepherds’ could be designed and used to guide a swarm of UxVs to achieve a goal while ameliorating typical communication bandwidth issues that arise in the control of multi agent systems. The book covers a wide range of topics ranging from the design of deep reinforcement learning models for shepherding a swarm, transparency in swarm guidance, and ontology-guided learning, to the design of smart swarm guidance methods for shepherding with UGVs and UAVs. The book extends the discussion to human-swarm teaming by looking into the real-time analysis of human data during human-swarm interaction, the concept of trust for human-swarm teaming, and the design of activity recognition systems for shepherding. Presents a comprehensive look at human-swarm teaming; Tackles artificial intelligence techniques for swarm guidance; Provides artificial intelligence techniques for real-time human performance analysis.
This book constitutes the refereed proceedings of the 15th International Conference on Virtual, Augmented and Mixed Reality, VAMR 2023, held as part of the 25th International Conference, HCI International 2023, in Copenhagen, Denmark, in July 2023. The total of 1578 papers and 396 posters included in the HCII 2022 proceedings was carefully reviewed and selected from 7472 submissions. The VAMR 2023 proceedings were organized in the following topical sections: Designing VAMR Applications and Environments; Visualization, Image Rendering and 3D in VAMR; Multimodal Interaction in VAMR; Robots and Avatars in Virtual and Augmented Reality; VAMR in Medicine and Health; VAMR in Aviation; and User Experience in VAMR.
The two-volume set LNAI 14453 and 14454 constitutes the refereed post-conference proceedings of the 15th International Conference on Social Robotics, ICSR 2023, held in Doha, Qatar, during December 4–7, 2023. The 68 revised full papers presented in these proceedings were carefully reviewed and selected from 83 submissions. They deal with topics around the interaction between humans and intelligent robots and on the integration of robots into the fabric of society. This year the special topic is "Human-Robot Collaboration: Sea; Air; Land; Space and Cyberspace”, focusing on all physical and cyber-physical domains where humans and robots collaborate.
Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.
Explores the breadth and versatility of Human Systems Engineering (HSE) practices and illustrates its value in system development A Framework of Human Systems Engineering: Applications and Case Studies offers a guide to identifying and improving methods to integrate human concerns into the conceptualization and design of systems. With contributions from a panel of noted experts on the topic, the book presents a series of Human Systems Engineering (HSE) applications on a wide range of topics: interface design, training requirements, personnel capabilities and limitations, and human task allocation. Each of the book's chapters present a case study of the application of HSE from different dimensions of socio-technical systems. The examples are organized using a socio-technical system framework to reference the applications across multiple system types and domains. These case studies are based in real-world examples and highlight the value of applying HSE to the broader engineering community. This important book: Includes a proven framework with case studies to different dimensions of practice, including domain, system type, and system maturity Contains the needed tools and methods in order to integrate human concerns within systems Encourages the use of Human Systems Engineering throughout the design process Provides examples that cross traditional system engineering sectors and identifies a diverse set of human engineering practices Written for systems engineers, human factors engineers, and HSI practitioners, A Framework of Human Systems Engineering: Applications and Case Studies provides the information needed for the better integration of human and systems and early resolution of issues based on human constraints and limitations.
Soldier-robot teams will be an important component of future battle spaces, creating a complex but potentially more survivable and effective combat force. The complexity of the battlefield of the future presents its own problems. The variety of robotic systems and the almost infinite number of possible military missions create a dilemma for researchers who wish to predict human-robot interactions (HRI) performance in future environments. Human-Robot Interactions in Future Military Operations provides an opportunity for scientists investigating military issues related to HRI to present their results cohesively within a single volume. The issues range from operators interacting with small ground robots and aerial vehicles to supervising large, near-autonomous vehicles capable of intelligent battlefield behaviors. The ability of the human to 'team' with intelligent unmanned systems in such environments is the focus of the volume. As such, chapters are written by recognized leaders within their disciplines and they discuss their research in the context of a broad-based approach. Therefore the book allows researchers from differing disciplines to be brought up to date on both theoretical and methodological issues surrounding human-robot interaction in military environments. The overall objective of this volume is to illuminate the challenges and potential solutions for military HRI through discussion of the many approaches that have been utilized in order to converge on a better understanding of this relatively complex concept. It should be noted that many of these issues will generalize to civilian applications as robotic technology matures. An important outcome is the focus on developing general human-robot teaming principles and guidelines to help both the human factors design and training community develop a better understanding of this nascent but revolutionary technology. Much of the research within the book is based on the Human Research and Engineering Directorate (HRED), U.S. Army Research Laboratory (ARL) 5-year Army Technology Objective (ATO) research program. The program addressed HRI and teaming for both aerial and ground robotic assets in conjunction with the U.S. Army Tank and Automotive Research and Development Center (TARDEC) and the Aviation and Missile Development Center (AMRDEC) The purpose of the program was to understand HRI issues in order to develop and evaluate technologies to improve HRI battlefield performance for Future Combat Systems (FCS). The work within this volume goes beyond the research results to encapsulate the ATO's findings and discuss them in a broader context in order to understand both their military and civilian implications. For this reason, scientists conducting related research have contributed additional chapters to widen the scope of the original research boundaries.
As a new strategy to realize the goal of flexible, robust, fault-tolerant robotic systems, the distributed autonomous approach has quickly established itself as one of the fastest growing fields in robotics. This book is one of the first to devote itself solely to this exciting area of research, covering such topics as self-organization, communication and coordination, multi-robot manipulation and control, distributed system design, distributed sensing, intelligent manufacturing systems, and group behavior. The fundamental technologies and system architectures of distributed autonomous robotic systems are expounded in detail, along with the latest research findings. This book should prove indispensable not only to those involved with robotic engineering but also to those in the fields of artificial intelligence, self-organizing systems, and coordinated control.
Organ Repair and Regeneration: Preserving Organs in the Regenerative Medicine Era encompasses updates on all organs, from the kidneys, to the lungs, liver, pancreas, intestines, and beyond. Chapters cover the pathophysiology of ischemia-reperfusion, repairing organs with MSC, repairing cardiac allografts in situ, and much more. The book conceptualizes the idea that the modern approach to organ preservation is ante literam, a form of organ repair and regeneration which, per se, is referred to as a field of health sciences under the umbrella of regenerative medicine. This book demonstrates the merging of regenerative medicine and organ transplantation. Covers all aspects of organ preservation, repair and regeneration Addresses the repair of organs that experience an Ischemia/Reperfusion (I/R) injury, those that are intended for transplantation, and specific issues related to each organ Presented by editors and authors who are physicians, surgeons and researchers in the field of organ transplantation and regenerative medicine