Download Free Shear In Reinforced Concrete Book in PDF and EPUB Free Download. You can read online Shear In Reinforced Concrete and write the review.

"TRB's National Cooperative Highway Research Program (NCHRP) Report 549: Simplified Shear Design of Structural Concrete Members examines development of practical equations for design of shear reinforcement in reinforced and prestressed concrete bridge girders. The report also includes recommended specifications, commentary, and examples illustrating application of the specifications. NCHRP Web-Only Document 78 contains extensive supporting information, including a database that can be used to compare the predictions from the recommended procedures to existing design procedures"--Publisher's description
fib Bulletin 81 reports the latest information available to researchers and practitioners on the analysis, design and experimental evidence of punching shear of structural concrete slabs. It follows previous efforts by the International Federation for Structural Concrete (fib) and its predecessor the Euro-International Committee for Concrete (CEB), through CEB Bulletin 168, Punching Shear in Reinforced Concrete (1985) and fibBulletin 12, Punching of structural concrete slabs (2001), and an international symposium sponsored by the punching shear subcommittee of ACI Committee 445 (Shear and Torsion) and held in Kansas City, Mo., USA, in 2005. This bulletin contains 18 papers that were presented in three sessions as part of an international symposium held in Philadelphia, Pa., USA, on October 25, 2016. The symposium was co-organized by the punching shear sub-committee of ACI 445 and by fib Working Party 2.2.3 (Punching and Shear in Slabs) with the objectives of not only disseminating information on this important design subject but also promoting harmonization among the various design theories and treatment of key aspects of punching shear design. The papers are organized in the same order they were presented in the symposium. The symposium honored Professor Emeritus Neil M. Hawkins (University of Illinois at Urbana-Champaign, USA), whose contributions through the years in the field of punching shear of structural concrete slabs have been paramount. The papers cover key aspects related to punching shear of structural concrete slabs under different loading conditions, the study of size effect on punching capacity of slabs, the effect of slab reinforcement ratio on the response and failure mode of slabs, without and with shear reinforcement, and its implications for the design and formulation in codes of practice, an examination of different analytical tools to predict the punching shear response of slabs, the study of the post-punching response of concrete slabs, the evaluation of design provisions in modern codes based on recent experimental evidence and new punching shear theories, and an overview of the combined efforts undertaken jointly by ACI 445 and fib WP 2.2.3 to generate test result databanks for the evaluation and calibration of punching shear design recommendations in North American and international codes of practice.
The contents of this book have been chosen with the following main aims: to review the present coverage of the major design codes and the CIRIA guide, and to explain the fundamental behaviour of deep beams; to provide information on design topics which are inadequately covered by the current codes and design manuals; and to give authoritative revie
This volume consists of papers presented at the International Workshop on Concrete Shear in Earthquake, held at the University of Houston, Texas, USA, 13-16 January 1991.
The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance. The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies. With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening Covers practical considerations including material behaviour, structural design and quality assurance