Download Free Shear Behavior Of Reinforced Concrete T Beams Strengthened With Carbon Fiber Reinforced Polymer Cfrp Sheets And Cfrp Anchors Book in PDF and EPUB Free Download. You can read online Shear Behavior Of Reinforced Concrete T Beams Strengthened With Carbon Fiber Reinforced Polymer Cfrp Sheets And Cfrp Anchors and write the review.

The objective of this research is the evaluation of shear behavior of full-scale reinforced concrete T-beams strengthened with carbon fiber reinforced polymer (CFRP) sheets and CFRP anchors. Although the CRFP material has high tensile strength, premature failure due to debonding CFRP sheets prevents utilizing that strength. The use of CFRP anchors prevents this failure, so the CFRP sheets are able to reach ultimate strain. The current shear design is based on plasticity, which assumes that all steel (ductile material) stirrups, across the critical section yield at ultimate. However the strain in the CFRP (brittle material), is essential to estimate the shear contribution of CFRP. To evaluate the validity of CFRP strengthening for shear, 24 tests were conducted with several parameters including shear-span-to-depth ratio, depth of beams, different transverse reinforcement ratios, and the layout of CFRP strips. In addition, a simple shear behavior model was developed to explain the differences between ductile and brittle material. From test observation, the use of CFRP anchors resulted in U-wrap application to perform like continuous wrapping which implies that a CFRP strip reached rupture strain because the anchors prevented debonding failure. However, all FRP strips did not rupture simultaneously because the strain distribution across a critical crack was not uniform. The average strain across the critical crack was about 0.005. Therefore a conservative value of effective strain (0.004) was selected for design purposes. In addition, when a beam is strengthened with CFRP, interactions between the contributions of the CFRP, steel or concrete must be taken into account. Factors ka, ks, and kf were introduced in the proposed shear design equations. Factor ka reflects the change in the material contributions as the shear span to depth ratio (a/d ratio) changes in deep beams. Factors ks and kf account for the change in steel or CFRP shear contribution due to the change in the critical crack angle as well as the interactions between the steel and FRP transverse reinforcement. As the amount of either steel or FRP material increase, the efficiency of the other material decreases.
This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
Fibre-reinforced polymer (FRP) composites are used to strengthen reinforced concrete (RC) structures. A large amount of research now exists on this. This book brings together all existing research into one volume.
TRB's National Cooperative Highway Research Program (NCHRP) Report 678: Design of FRP Systems for Strengthening Concrete Girders in Shear offers suggested design guidelines for concrete girders strengthened in shear using externally bonded Fiber-Reinforced Polymer (FRP) systems. The guidelines address the strengthening schemes and application of the FRP systems and their contribution to shear capacity of reinforced and prestressed concrete girders. The guidelines are supplemented by design examples to illustrate their use for concrete beams strengthened with different FRP systems. Appendix A of NCHRP Report 678, which contains the research agency's final report, provides further elaboration on the work performed in this project. Appendix A: Research Description and Findings, is only available online.
Strengthening Design of Reinforced Concrete with FRP establishes the art and science of strengthening design of reinforced concrete with fiber-reinforced polymer (FRP) beyond the abstract nature of the design guidelines from Canada (ISIS Canada 2001), Europe (FIB Task Group 9.3 2001), and the United States (ACI 440.2R-08). Evolved from thorough cla
The use of carbon fiber reinforced polymer (CFRP) anchors can improve the performance of reinforced concrete (RC) beams strengthened in flexure with CFRP sheets. This improvement results from delaying or controlling the debonding of FRP sheets at failure. In this research, six full-scale T beams and six full-scale rectangular beams are prepared and tested as two separate series. All the specimens are strengthened identically using three layers of unidirectional CFRP sheets and one layer of bidirectional CFRP sheet. The first strengthened beam in each series is anchored with side GFRP bars inserted longitudinally to both sides of the beam. The second strengthened beam in each series is anchored with GFRP patches applied to both sides of the beam. CFRP spike anchors are utilized for the other beams in the two series. The third beam in each series is secured with CFRP spike anchors of 16 mm diameter at 140 mm spacing along the shear span. The fourth strengthened beam in each series is anchored with CFRP spike anchors of 19 mm diameter at 203 mm spacing along the shear span. Four CFRP anchors are applied to each shear span of the fifth beam in each series with 16 mm- diameter (spaced at 406 mm) to secure the flexural CFRP sheets. An end CFRP anchorage technique is considered for the last beam in each series, which includes installing one CFRP spike anchor placed at 76 mm from the free edge of CFRP sheets. The beams were tested under four-point bending until failure and the results for each series are evaluated. In addition, the outcome is compared with other anchorage techniques that have been examined by some researchers utilizing the same beam geometry and properties. The experimental testing and nonlinear analysis showed improvement in the flexural performance of anchored beams compared with those strengthened beams without anchorage. By attaining debonding or rupture failure modes for the T beams and concrete crushing failure mode for the rectangular specimens, the ultimate sectional force capacity is achieved. Accordingly, the results prove that the anchors offer an effective solution against premature debonding failure.
Rehabilitation of Concrete Structures with Fiber Reinforced Polymer is a complete guide to the use of FRP in flexural, shear and axial strengthening of concrete structures. Through worked design examples, the authors guide readers through the details of usage, including anchorage systems, different materials and methods of repairing concrete structures using these techniques. Topics include the usage of FRP in concrete structure repair, concrete structural deterioration and rehabilitation, methods of structural rehabilitation and strengthening, a review of the design basis for FRP systems, including strengthening limits, fire endurance, and environmental considerations. In addition, readers will find sections on the strengthening of members under flexural stress, including failure modes, design procedures, examples and anchorage detailing, and sections on shear and torsion stress, axial strengthening, the installation of FRP systems, and strengthening against extreme loads, such as earthquakes and fire, amongst other important topics. - Presents worked design examples covering flexural, shear, and axial strengthening - Includes complete coverage of FRP in Concrete Repair - Explores the most recent guidelines (ACI440.2, 2017; AS5100.8, 2017 and Concrete society technical report no. 55, 2012)