Download Free Severe Space Weather Eventsaunderstanding Societal And Economic Impacts Book in PDF and EPUB Free Download. You can read online Severe Space Weather Eventsaunderstanding Societal And Economic Impacts and write the review.

The adverse effects of extreme space weather on modern technology-power grid outages, high-frequency communication blackouts, spacecraft anomalies-are well known and well documented, and the physical processes underlying space weather are also generally well understood. Less well documented and understood, however, are the potential economic and societal impacts of the disruption of critical technological systems by severe space weather. As a first step toward determining the socioeconomic impacts of extreme space weather events and addressing the questions of space weather risk assessment and management, a public workshop was held in May 2008. The workshop brought together representatives of industry, the government, and academia to consider both direct and collateral effects of severe space weather events, the current state of the space weather services infrastructure in the United States, the needs of users of space weather data and services, and the ramifications of future technological developments for contemporary society's vulnerability to space weather. The workshop concluded with a discussion of un- or underexplored topics that would yield the greatest benefits in space weather risk management.
The adverse effects of extreme space weather on modern technology-power grid outages, high-frequency communication blackouts, spacecraft anomalies-are well known and well documented, and the physical processes underlying space weather are also generally well understood. Less well documented and understood, however, are the potential economic and societal impacts of the disruption of critical technological systems by severe space weather. This volume, an extended four-color summary of the book, Severe Space Weather Events-Understanding Societal and Economic Impacts, addresses the questions of space weather risk assessment and management. The workshop on which the books are based brought together representatives of industry, the government, and academia to consider both direct and collateral effects of severe space weather events, the current state of the space weather services infrastructure in the United States, the needs of users of space weather data and services, and the ramifications of future technological developments for contemporary society's vulnerability to space weather. The workshop concluded with a discussion of un- or underexplored topics that would yield the greatest benefits in space weather risk management.
Affecting technological systems at a global-scale, space weather can disrupt high-frequency radio signals, satellite-based communications, navigational satellite positioning and timing signals, spacecraft operations, and electric power delivery with cascading socioeconomic effects resulting from these disruptions. Space weather can also present an increased health risk for astronauts, as well as aviation flight crews and passengers on transpolar flights. In 2019, the National Academies was approached by the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the National Science Foundation to organize a workshop that would examine the operational and research infrastructure that supports the space weather enterprise, including an analysis of existing and potential future measurement gaps and opportunities for future enhancements. This request was subsequently modified to include two workshops, the first (Phase I) of which occurred in two parts on June 16-17 and September 9-11, 2020. The Phase II workshop occurred on April 11-14, 2022, with sessions on agency updates, research needs, data science, observational and modeling needs, and emerging architectures relevant to the space weather research community and with ties to operational needs. This publication summarizes the presentation and discussion of that workshop.
Extreme Events in Geospace: Origins, Predictability, and Consequences helps deepen the understanding, description, and forecasting of the complex and inter-related phenomena of extreme space weather events. Composed of chapters written by representatives from many different institutions and fields of space research, the book offers discussions ranging from definitions and historical knowledge to operational issues and methods of analysis. Given that extremes in ionizing radiation, ionospheric irregularities, and geomagnetically induced currents may have the potential to disrupt our technologies or pose danger to human health, it is increasingly important to synthesize the information available on not only those consequences but also the origins and predictability of such events. Extreme Events in Geospace: Origins, Predictability, and Consequences is a valuable source for providing the latest research for geophysicists and space weather scientists, as well as industries impacted by space weather events, including GNSS satellites and radio communication, power grids, aviation, and human spaceflight. The list of first/second authors includes M. Hapgood, N. Gopalswamy, K.D. Leka, G. Barnes, Yu. Yermolaev, P. Riley, S. Sharma, G. Lakhina, B. Tsurutani, C. Ngwira, A. Pulkkinen, J. Love, P. Bedrosian, N. Buzulukova, M. Sitnov, W. Denig, M. Panasyuk, R. Hajra, D. Ferguson, S. Lai, L. Narici, K. Tobiska, G. Gapirov, A. Mannucci, T. Fuller-Rowell, X. Yue, G. Crowley, R. Redmon, V. Airapetian, D. Boteler, M. MacAlester, S. Worman, D. Neudegg, and M. Ishii. Helps to define extremes in space weather and describes existing methods of analysis Discusses current scientific understanding of these events and outlines future challenges Considers the ways in which space weather may affect daily life Demonstrates deep connections between astrophysics, heliophysics, and space weather applications, including a discussion of extreme space weather events from the past Examines national and space policy issues concerning space weather in Australia, Canada, Japan, the United Kingdom, and the United States
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
For almost a decade, economists Kevin M. Simmons and Daniel Sutter have been studying the economic effects and social consequences of the approximately 1,200 tornadoes that touch down across the United States annually. During this time, they have compiled information from sources such as NOAA and the U.S. Census Bureau to examine the casualties caused by tornadoes and to evaluate the National Weather Service (NWS)’s efforts to reduce these casualties. Their unique database has enabled this fascinating and game-changing study for meteorologists, social scientists, emergency managers, and everyone studying severe weather, policy, disaster management, or applied economics.
Climate change can reasonably be expected to increase the frequency and intensity of a variety of potentially disruptive environmental events-slowly at first, but then more quickly. It is prudent to expect to be surprised by the way in which these events may cascade, or have far-reaching effects. During the coming decade, certain climate-related events will produce consequences that exceed the capacity of the affected societies or global systems to manage; these may have global security implications. Although focused on events outside the United States, Climate and Social Stress: Implications for Security Analysis recommends a range of research and policy actions to create a whole-of-government approach to increasing understanding of complex and contingent connections between climate and security, and to inform choices about adapting to and reducing vulnerability to climate change.
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. Collects many representative non-traditional approaches to space weather into a single volume Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
The climate record for the past 100,000 years clearly indicates that the climate system has undergone periodic-and often extreme-shifts, sometimes in as little as a decade or less. The causes of abrupt climate changes have not been clearly established, but the triggering of events is likely to be the result of multiple natural processes. Abrupt climate changes of the magnitude seen in the past would have far-reaching implications for human society and ecosystems, including major impacts on energy consumption and water supply demands. Could such a change happen again? Are human activities exacerbating the likelihood of abrupt climate change? What are the potential societal consequences of such a change? Abrupt Climate Change: Inevitable Surprises looks at the current scientific evidence and theoretical understanding to describe what is currently known about abrupt climate change, including patterns and magnitudes, mechanisms, and probability of occurrence. It identifies critical knowledge gaps concerning the potential for future abrupt changes, including those aspects of change most important to society and economies, and outlines a research strategy to close those gaps. Based on the best and most current research available, this book surveys the history of climate change and makes a series of specific recommendations for the future.