Download Free Several Complex Variables With Connections To Algebraic Geometry And Lie Groups Book in PDF and EPUB Free Download. You can read online Several Complex Variables With Connections To Algebraic Geometry And Lie Groups and write the review.

This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.
Expository articles on Several Complex Variables and its interactions with PDEs, algebraic geometry, number theory, and differential geometry, first published in 2000.
We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space
The book provides an introduction to the theory of functions of several complex variables and their singularities, with special emphasis on topological aspects. The topics include Riemann surfaces, holomorphic functions of several variables, classification and deformation of singularities, fundamentals of differential topology, and the topology of singularities. The aim of the book is to guide the reader from the fundamentals to more advanced topics of recent research. All the necessary prerequisites are specified and carefully explained. The general theory is illustrated by various examples and applications.
Presents a collection of papers from the Symposium on Several Complex Variables held April 12-15, 1983 in Madison, Wisconsin. This book contains a selection of the presented papers as well as some contributed papers.
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
This is the first textbook treatment of work leading to the landmark 1979 Kazhdan-Lusztig Conjecture on characters of simple highest weight modules for a semisimple Lie algebra $\mathfrak{g}$ over $\mathbb {C}$. The setting is the module category $\mathscr {O}$ introduced by Bernstein-Gelfand-Gelfand, which includes all highest weight modules for $\mathfrak{g}$ such as Verma modules and finite dimensional simple modules. Analogues of this category have become influential in many areas of representation theory. Part I can be used as a text for independent study or for a mid-level one semester graduate course; it includes exercises and examples. The main prerequisite is familiarity with the structure theory of $\mathfrak{g}$. Basic techniques in category $\mathscr {O}$ such as BGG Reciprocity and Jantzen's translation functors are developed, culminating in an overview of the proof of the Kazhdan-Lusztig Conjecture (due to Beilinson-Bernstein and Brylinski-Kashiwara). The full proof however is beyond the scope of this book, requiring deep geometric methods: $D$-modules and perverse sheaves on the flag variety. Part II introduces closely related topics important in current research: parabolic category $\mathscr {O}$, projective functors, tilting modules, twisting and completion functors, and Koszul duality theorem of Beilinson-Ginzburg-Soergel.
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.