Download Free Separations For Biotechnology Book in PDF and EPUB Free Download. You can read online Separations For Biotechnology and write the review.

Centrifugal Separations in Biotechnology, Second Edition, is the only book on the market devoted to centrifugal separation in biotechnology. Key topics covered include a full introduction to centrifugation, sedimentation and separation; detailed coverage of centrifuge types, including batch and semi-batch centrifuges, disk-stack and tubular decanter centrifuges; methods for increasing solids concentration; laboratory and pilot testing of centrifuges; selection and sizing centrifuges; scale-up of equipment, performance prediction and analysis of test results using numerical simulation. Centrifugal Separations in Biotechnology, Second Edition, provides guidance on troubleshooting and optimizing centrifuges, and then goes on to explore the commercial applications of centrifuges in biotechnology. It gives detailed process information and data to assist in the development of particular processes from existing systems. It is of value to professionals in the chemical, bioprocess, and biotech sectors, and all those concerned with bioseparation, bioprocessing, unit-operations and process engineering. - Provides a comprehensive guide to centrifuges, their optimal development, and their operation in the biotechnology industry - Updated throughout based on developments in industrial applications and advances in our understanding of centrifugal separations in biotechnology - Discusses applications for the separation of proteins, DNA, mitochondria, ribosomes, lysosomes and other cellular elements - Includes new sections on use of optimal polymer dosage in waste treatment, new centrifuge designs for applications in algae processing, biopharma, and more
This book reviews methods and techniques for separating food components and products of the biotechnology industry. The introduction focuses on food composition and some of the conventional separation techniques. Subsequent chapters deal with each specific type or area of application individually and include information on the basic principles, industrial equipment available, commercial applications and an overview of research and development.
Edited to avoid duplication and favor comprehensiveness, 20 contributors detail the recovery, separation, and purification operations of bioprocess technology. Individual chapters in this classic yet still highly relevant work emphasize concepts that are becoming more and more important when applied to the large scale versions of techniques that are considered well established. Aside from fully discussing processes, Separation Processes in Biotechnology includes sections on concentration separation and operation, purification operations, and product release and recovery. It also discusses plant operation and equipment and delves into economic considerations
This book describes separation and purification techniquesùadsorption, ion exchange and liquid chromatography on solid supportsùused for fermentation and biochemical feedstreams. Emphasis is placed on basic sorption theory, laboratory evaluation techniques, sorptive materials and their characteristics, scale-up of laboratory techniques, and their industrial applications. Each chapter contains specific examples illustrating the use of purification techniques in biotechnology processes.
Offers a concise introduction to the separation and purification of biochemicals. Bridges two scientific cultures, providing an introduction to bioseparations for scientists with no background in engineering and for engineers with little grounding in biology. The authors supplement the ideas by simple worked examples, making the techniques of bioseparations easy to learn. Discusses removal of insolubles, product isolation, purification and polishing.
The Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, Second Edition provides detailed information on membrane separation technologies from an international team of experts. The handbook fills an important gap in the current literature by providing a comprehensive discussion of membrane application
Separation science plays a critical role in maintaining our standard of living and quality of life. Many industrial processes and general necessities such as chemicals, medicines, clean water, safe food, and energy sources rely on chemical separations. However, the process of chemical separations is often overlooked during product development and this has led to inefficiency, unnecessary waste, and lack of consensus among chemists and engineers. A reevaluation of system design, establishment of standards, and an increased focus on the advancement of separation science are imperative in supporting increased efficiency, continued U.S. manufacturing competitiveness, and public welfare. A Research Agenda for Transforming Separation Science explores developments in the industry since the 1987 National Academies report, Separation and Purification: Critical Needs and Opportunities. Many needs stated in the original report remain today, in addition to a variety of new challenges due to improved detection limits, advances in medicine, and a recent emphasis on sustainability and environmental stewardship. This report examines emerging chemical separation technologies, relevant developments in intersecting disciplines, and gaps in existing research, and provides recommendations for the application of improved separation science technologies and processes. This research serves as a foundation for transforming separation science, which could reduce global energy use, improve human and environmental health, and advance more efficient practices in various industries.
Success in meeting the challenge to produce the commercial products anticipated by the exploitation of biological processes depends upon provid ing effective separation protocols. Effectiveness can be measured in terms of selectivity, purity, resolution and validatory success. The major processing problems are associated with either the selective recovery of molecules which are present in low concentrations from complex mixtures or the selective removal of contaminants from the desired molecule. Central to the evolution of processes satisfying this demand are the regulatory requirements being imposed by governments on the purity of a product, especially in the health care market. Synthetic organic chemists are increasingly finding it advantageous to conduct one or more steps using either enzymic biotransformations where molecules with a single and consistent stereochemistry or chirality are required. The underlying princi ples behind the methods, techniques and processes currently being used and developed commercially rely upon the biospecific nature and properties of the desired molecule. When these factors are married to the more traditional techniques of precipitation, chromatography, liquid-liquid extraction and membrane processes, powerful tools emerge, allowing highly selective separations to be designed. The logical extension of these combinations is to apply genetic engineering techniques to influence the separations at a more fundamental and structural level by modifying the target protein at source, during its synthesis, to facilitate its separation in a given, selective manner, leading to the distinct possibility of producing 'designer' separation programmes.
The current book gives an excellent insight into downstream processing technology and explains how to establish a successful strategy for an efficient recovery, isolation and purification of biosynthetic products. In addition to the overview of purification steps and unit operations, the authors provide practical information on capital and operating costs related to downstream processing.