Download Free Separation And Purification Section Book in PDF and EPUB Free Download. You can read online Separation And Purification Section and write the review.

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.
Separation Methods in Drug Synthesis and Purification
Progress in Filtration and Separation contains reference content on fundamentals, core principles, technologies, processes, and applications. It gives detailed coverage of the latest technologies and research, models, applications and standards, practical implementations, case studies, best practice, and process selection. Extensive worked examples are included that cover basic calculations through to process design, including the effects of key variables. Techniques and topics covered include pervaporation, electrodialysis, ion exchange, magnetic (LIMS, HIMS, HGMS), ultrasonic, and more. - Solves the needs of university based researchers and R&D engineers in industry for high-level overviews of sub-topics within the solid-liquid separation field - Provides insight and understanding of new technologies and methods - Combines the expertise of several separations experts
The report represents the report of activities for the Separation and Purification Section for fiscal year 1970. Studies on the properties of ion exchange Standard Reference Material microbeads was extended into the effect of humidity on bead volume, thermal effects on bead stability, and measurement of ion exchanger capacity. Zeolitic particles were evaluated for their potential as ion exchange microstandards. Preliminary investigations were completed for the quantitative infrared measurement of crosslinking in poly (styrene/divinylbenzene) copolymers. Light and electron microscopy were used to help reveal the heterogeneity in a test dust standard. Progress is reported in the development and understanding of analytical liquid chromatography with an increased direction toward gel chromatography. The selection of apparatus components, their performance, and their application to examination of the clinical Standard Reference Material, bilirubin, is described. Particle contamination in inorganic salts and in container walls were examined, the former by ultrafiltration and accurate light scattering measurements and the latter by microscopic methods. (Author).
The report describes the initial growth and research activities of the Separation and Purification Section since its formal organization in February, 1966.A research capability for the study and refined adaptation of ion exchange materials is described.There are new activities reported for the areas of extreme purification, chemical reagents, organic chemicals, including the use of crystallization for the achievement, protection, and measurement of chemical purity.Specific studies were conducted in the purification of mineral acids, nitrobenzene, and the development of zone refining methods.(Author).
The chapters of this book are based upon lectures presented at the NATO Advanced Study Institute on Membrane Processes in Separation and Purification (March 21 - April 2, 1993, Curia, Portugal), organized as a successor and update to a similar Institute that took place 10 years ago (p.M.Bungay, H.K. Lonsdale, M.N. de Pinho (Eds.): Synthetic Membranes: Science, Engineering and Applications, NATO ASI Series, Reidel, Dordrecht, 1986). The decade between the two NATO Institutes witnesses the transition from individually researched membrane processes to an applied and established membrane separation technology, as is reflected by the contents of the corresponding proceeding volumes. By and large, the first volume presents itself as a textbook on membrane processes, still valid, while the present volume focuses on areas of separation need as amenable to membrane processing: Biotechnology and Environmental Technology. Accordingly, the contributions to this volume are grouped into "Membranes in Biotechnology" (11 papers), "Membranes in Environmental Technology" (6 papers), and "New Concepts" (4 papers). This is followed by one contribution each on "Energy Requirements" and "Education", i.e., membrane processes within an academic curriculum. The book thus amounts to a state of the art of applied membrane processing and may well augment the more fundamental approach of its predecessor.
This book presents the recent research on the separation, purification and downstream utilization of CO2 and other flue gases. Chapters include a detailed discussion on the purification and further conversion of CO2 to commodity chemicals and fuels. With contributions from renowned researchers in the field, the book focuses on the current challenges of catalytic high-pressure chemical conversion and biochemical conversion into high-value products. This book is of interest to researchers, professionals, and students working on carbon capture and sequestration, and is a valuable resource for policy makers and government agents working on guidelines and frameworks for carbon capture and reuse.
Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.