Download Free Sensor Networks And Signal Processing Book in PDF and EPUB Free Download. You can read online Sensor Networks And Signal Processing and write the review.

In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts.
This book offers a collection of high-quality research papers presented at the 2nd International Conference on Sensor Networks and Signal Processing (SNSP 2019), held in Taiwan on November 19–22, 2019. It presents novel contributions in the areas of sensor and actuator networks, wireless networks, networking and protocols, security and privacy, wireless communications, distributed algorithms, Internet of Things, system modeling and performance analysis, fault tolerance/diagnostics, information management, data mining and analysis, embedded systems design, signal theory, signal and image processing, detection and estimation, spectral analysis, software developments, pattern recognition, data processing, remote sensing, big data, machine learning, information and coding theory, and industrial applications.
Signal Processing for Intelligent Sensors with MATLAB®, Second Edition once again presents the key topics and salient information required for sensor design and application. Organized to make it accessible to engineers in school as well as those practicing in the field, this reference explores a broad array of subjects and is divided into sections: Fundamentals of Digital Signal Processing, Frequency Domain Processing, Adaptive System Identification and Filtering, Wavenumber Sensor Systems, and Signal Processing Applications. Taking an informal, application-based approach and using a tone that is more engineer-to-engineer than professor-to-student, this revamped second edition enhances many of the features that made the original so popular. This includes retention of key algorithms and development methodologies and applications, which are creatively grouped in a way that differs from most comparable texts, to optimize their use. New for the Second Edition: Inclusion of more solved problems Web access to a large collection of MATLAB® scripts used to support data graphs presented throughout the book Additional coverage of more audio engineering, transducers, and sensor networking technology A new chapter on Digital Audio processing reflects a growing interest in digital surround sound (5.1 audio) techniques for entertainment, home theaters, and virtual reality systems New sections on sensor networking, use of meta-data architectures using XML, and agent-based automated data mining and control Serving dual roles as both a learning resource and a field reference on sensor system networks, this book progressively reveals digestible nuggets of critical information to help readers quickly master presented algorithms and adapt them to meet their requirements. It illustrates the current trend toward agile development of web services for wide area sensor networking and intelligent processing in the sensor system networks that are employed in homeland security, business, and environmental and demographic information systems.
Publisher Description
“Intelligent Sensing, Instrumentation and Measurements” addresses issues towards the development of sensor nodes for wireless Sensor Networks. The fundamentals of sensors, interfacing, power supplies, configuration of sensor node, and GUI development are covered. The book will be useful for engineers and researchers in the field ,especially for higher undergraduate and postgraduate students as well as practitioners working on the development of Wireless Sensor Networks or Smart Sensors.
A wireless sensor network (WSN) uses a number of autonomous devices to cooperatively monitor physical or environmental conditions via a wireless network. Since its military beginnings as a means of battlefield surveillance, practical use of this technology has extended to a range of civilian applications including environmental monitoring, natural disaster prediction and relief, health monitoring and fire detection. Technological advancements, coupled with lowering costs, suggest that wireless sensor networks will have a significant impact on 21st century life. The design of wireless sensor networks requires consideration for several disciplines such as distributed signal processing, communications and cross-layer design. Wireless Sensor Networks: Signal Processing and Communications focuses on the theoretical aspects of wireless sensor networks and offers readers signal processing and communication perspectives on the design of large-scale networks. It explains state-of-the-art design theories and techniques to readers and places emphasis on the fundamental properties of large-scale sensor networks. Wireless Sensor Networks: Signal Processing and Communications : Approaches WSNs from a new angle – distributed signal processing, communication algorithms and novel cross-layer design paradigms. Applies ideas and illustrations from classical theory to an emerging field of WSN applications. Presents important analytical tools for use in the design of application-specific WSNs. Wireless Sensor Networks will be of use to signal processing and communications researchers and practitioners in applying classical theory to network design. It identifies research directions for senior undergraduate and graduate students and offers a rich bibliography for further reading and investigation.
A handbook on recent advancements and the state of the art in array processing and sensor Networks Handbook on Array Processing and Sensor Networks provides readers with a collection of tutorial articles contributed by world-renowned experts on recent advancements and the state of the art in array processing and sensor networks. Focusing on fundamental principles as well as applications, the handbook provides exhaustive coverage of: wavelets; spatial spectrum estimation; MIMO radio propagation; robustness issues in sensor array processing; wireless communications and sensing in multi-path environments using multi-antenna transceivers; implicit training and array processing for digital communications systems; unitary design of radar waveform diversity sets; acoustic array processing for speech enhancement; acoustic beamforming for hearing aid applications; undetermined blind source separation using acoustic arrays; array processing in astronomy; digital 3D/4D ultrasound imaging technology; self-localization of sensor networks; multi-target tracking and classification in collaborative sensor networks via sequential Monte Carlo; energy-efficient decentralized estimation; sensor data fusion with application to multi-target tracking; distributed algorithms in sensor networks; cooperative communications; distributed source coding; network coding for sensor networks; information-theoretic studies of wireless networks; distributed adaptive learning mechanisms; routing for statistical inference in sensor networks; spectrum estimation in cognitive radios; nonparametric techniques for pedestrian tracking in wireless local area networks; signal processing and networking via the theory of global games; biochemical transport modeling, estimation, and detection in realistic environments; and security and privacy for sensor networks. Handbook on Array Processing and Sensor Networks is the first book of its kind and will appeal to researchers, professors, and graduate students in array processing, sensor networks, advanced signal processing, and networking.
The desire for precise knowledge about the location of a moving object at any time instant has motivated a great deal of scientific research recently. This is owing to a steady expansion of the range of enabling devices and technologies, as well as the need for seamless solutions for location-based services. Besides localization accuracy, a common requirement for emerging solutions is that they are cost-abstemious, both in terms of the financial and computational cost. Hence, development of localization strategies from already deployed technologies, e.g., from different terrestrial radio frequency sources is of great practical interest. Amongst other, these include localization strategies based on received signal strength (RSS), time of arrival, angle of arrival (AoA) or a combination of them. RSS-AoA-based Target Localization and Tracking in Wireless Sensor Networks presents recent advances in developing algorithms for target localization and tracking, reflecting the state-of-the-art algorithms and research achievements in target localization and tracking based on hybrid (RSS-AoA) measurements. Technical topics discussed in the book include: Centralized RSS-AoA-based Target LocalizationDistributed RSS-AoA-based Target LocalizationRSS-AoA-based Target Tracking via Maximum A Posteriori EstimatorRSS-AoA-based Target Tracking via Kalman Filter RSS-AoA-based via Sensor Navigation This book is of interest for personnel in telecommunications and surveillance industries, military, smart systems, as well as academic staff and postgraduate/research students in telecommunications, signal processing, and non-smooth and convex optimization.
This book incorporates a selection of research and development papers. Its scope is on history and background, underlying design methodology, application domains and recent developments. The readers will be able to understand the underlying technology, philosophy, concepts, ideas, and principles, with regard to broader areas of sensor network. Aspects of sensor network and experimental results have been presented in proper order.
From simple thermistors to intelligent silicon microdevices with powerful capabilities to communicate information across networks, sensors play an important role in such diverse fields as biomedical and chemical engineering to wireless communications. Introducing a new dependent count method for frequency signal processing, this book presents a practical approach to the design of signal processing sensors. Modern advanced microsensors technologies require new and equally advanced methods of frequency signal processing in order to function at inreasingly high speeds. The authors provide a comprehensive overview of data acquisition and signal processing methods for the new generation of smart and quasi-smart sensors. The practical approach of the text includes coverage of the design of signal processing methods for digital, frequency, period, duty-cycle and time interval sensors. * Contains numerous practical examples illustrating the design of unique signal processing sensors and transducers * Details traditional, novel, and state of the art methods for frequency signal processing * Coverage of the physical characteristics of smart sensors, development methods and applications potential * Outlines the concept, principles and nature of the method of dependent count (MDC) ; a unique method for frequency signal processing, developed by the authors This text is a leading edge resource for measurement engineers, researchers and developers working in microsensors, MEMS and microsystems, as well as advanced undergraduates and graduates in electrical and mechanical engineering.