Download Free Sensitivity Analysis And Optimization Of Discrete Event Systems Book in PDF and EPUB Free Download. You can read online Sensitivity Analysis And Optimization Of Discrete Event Systems and write the review.

A unified and rigorous treatment of the associated stochastic optimization problems is provided and recent advances in perturbation theory encompassed. Throughout the book emphasis is upon concepts rather than mathematical completeness with the advantage that the reader only requires a basic knowledge of probability, statistics and optimization.
Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.
This unique textbook comprehensively introduces the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queueing theory, discrete-event simulation, and concurrent estimation techniques. Topics and features: detailed treatment of automata and language theory in the context of discrete event systems, including application to state estimation and diagnosis comprehensive coverage of centralized and decentralized supervisory control of partially-observed systems timed models, including timed automata and hybrid automata stochastic models for discrete event systems and controlled Markov chains discrete event simulation an introduction to stochastic hybrid systems sensitivity analysis and optimization of discrete event and hybrid systems new in the third edition: opacity properties, enhanced coverage of supervisory control, overview of latest software tools This proven textbook is essential to advanced-level students and researchers in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, transportation networks, operations research, and industrial engineering. ​Christos G. Cassandras is Distinguished Professor of Engineering, Professor of Systems Engineering, and Professor of Electrical and Computer Engineering at Boston University. Stéphane Lafortune is Professor of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor.
Discrete Event Systems: Analysis and Control is the proceedings of WODES2000 (the 5th Workshop on Discrete Event Systems, held in Ghent, Belgium, on August 21-23, 2000). This book provides a survey of the current state of the art in the field of modeling, analysis and control synthesis of discrete event systems, lecture notes for a mini course on sensitivity analysis for performance evaluation of timed discrete event systems, and 48 carefully selected papers covering all areas of discrete event theory and the most important applications domains. Topics include automata theory and supervisory control (12); Petri net based models for discrete event systems, and their control synthesis (11); (max,+) and timed automata models (9); applications papers related to scheduling, failure detection, and implementation of supervisory controllers (7); formal description of PLCs (6); and finally, stochastic models of discrete event systems (3).
A step-by-step guide for today's modeling and simulation practices This new guide for modeling and simulation of discrete-event systems (DES) demonstrates why simulation is fast becoming the method of choice for the evaluation of system performance in science, engineering, and management. The book begins with the basics of conventional simulation, then proceeds to modern simulation-treating sensitivity analysis and optimization in a wide range of systems that exhibit complex interaction of discrete events. These include communications networks, flexible manufacturing systems, PERT (project evaluation and review techniques) networks, queueing systems, and more. Less focused on theory than on presenting a clear approach to practical applications, Modern Simulation and Modeling: * Emphasizes concepts rather than mathematical completeness * Integrates references and explanations of complex topics into the body of the text * Provides an innovative chapter on rare-event probability estimation * Describes the implementation of the score function (SF) method using the NSO simulation package * Features 40 illustrations and numerous algorithms * Offers extensive, end-of-chapter exercise sets * Includes chapter bibliographies for further reading Modern Simulation and Modeling is an essential text for graduate students of DES and stochastic processes and for undergraduate students in simulation. It is also an excellent reference for professionals in statistics and probability, mathematics, and management science.
Dieses Buch ist eine unschätzbare Informationsquelle für alle Ingenieure, Designer, Manager und Techniker bei Entwicklung, Studium und Anwendung einer großen Vielzahl von Simulationstechniken. Es vereint die Arbeit internationaler Simulationsexperten aus Industrie und Forschung. Alle Aspekte der Simulation werden in diesem umfangreichen Nachschlagewerk abgedeckt. Der Leser wird vertraut gemacht mit den verschiedenen Techniken von Industriesimulationen sowie mit Einsatz, Anwendungen und Entwicklungen. Neueste Fortschritte wie z.B. objektorientierte Programmierung werden ebenso behandelt wie Richtlinien für den erfolgreichen Umgang mit simulationsgestützten Prozessen. Auch gibt es eine Liste mit den wichtigsten Vertriebs- und Zulieferadressen. (10/98)
With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.
This volume contains selected papers presented at the "International Workshop on Computationally Intensive Methods in Simulation and Op th th timization" held from 23 to 25 August 1990 at the International Institute for Applied Systems Analysis (nASA) in La~enburg, Austria. The purpose of this workshop was to evaluate and to compare recently developed methods dealing with optimization in uncertain environments. It is one of the nASA's activities to study optimal decisions for uncertain systems and to make the result usable in economic, financial, ecological and resource planning. Over 40 participants from 12 different countries contributed to the success of the workshop, 12 papers were selected for this volume. Prof. A. Kurzhanskii Chairman of the Systems and Decision Sciences Program nASA Preface Optimization in an random environment has become an important branch of Applied Mathematics and Operations Research. It deals with optimal de cisions when only incomplete information of t.he future is available. Consider the following example: you have to make the decision about the amount of production although the future demand is unknown. If the size of the de mand can be described by a probability distribution, the problem is called a stochastic optimization problem.