Download Free Sensing And Artificial Intelligence Solutions For Food Manufacturing Book in PDF and EPUB Free Download. You can read online Sensing And Artificial Intelligence Solutions For Food Manufacturing and write the review.

This book gives readers a practical introduction into machine learning and sensing techniques, their design and ultimately specific applications that could improve food production. It shows how these sensing and computing systems are suitable for process implementation in food factories. This book starts by giving the reader an overview of the historic structures of food manufacturing standards and how they defined today’s manufacturing. It is followed by a topical introduction for professionals in the food industries in topics such as AI, machine learning, and neural networks. It also includes an explanation of the different sensor systems and their basic principles. It shows how these sensing and computing systems are suitable for process implementation in food factories and what types of sensing systems have already been proven to deliver benefit to the food manufacturing industries. The authors also discuss issues around food safety, labelling, and traceability and how sensing and AI can help to resolve issues. They also use case studies and specific examples that can show the benefit of such technologies compared to current approaches. This book is a practical introduction and handbook for students, food engineers, technologists and process engineers on the benefits and challenges around modern manufacturing systems following Industry 4.0 approaches.
This book details recent advances in the applications of nanobiofertilizers as a substitute for synthetic fertilizers in boosting food production. With the steady rise of the world’s population, there is a need to increase the production of safe and nutritious food. The constant loss of arable land, as a result of various anthropogenic activities from human action, has become a threat to global biodiversity and ecosystems. Additionally, the issue of climate change has imposed many obstacles to increasing agricultural productivity, especially from biotic and abiotic stressors and temperature-limited environments, such as in high altitudes or seasonally hot regions. Because of these factors, there is a need to adopt sustainable and modern technologies that can boost and improve the rate of food production. One of the cheapest means of enhancing sustainable food production is to explore natural and unlimited beneficial microorganisms, particularly those that can increase the level of soil fertility, improve crop production and health, improve tolerance to stress, support nutrient uptake and availability, and boost natural biodiversity. The synergetic effect of nanotechnology and beneficial microorganisms for the effective bio-fabrication of nanobiofertilizers, is a sustainable solution for producing pesticide-free food. This book provides a deep insight into microbial diversity, recent techniques used for the isolation, screening, and characterization of beneficial microorganisms with eco-friendly attributes, used for bioengineering of nanobiofertilizers, as well as the application of proteomics, metabolomics, genomics, and bioinformatics. The book also covers commercialization, patents, and the business and socio-economic aspects of nanobiofertilizers, as well as the role of policymakers, stakeholders, and government agencies in the translation of nanobioferilizer research into policy. Audience The book is a useful resource for a diverse audience, including industrialists, food industry professionals, agriculturists, agricultural microbiologists, plant pathologists, botanists, microbiologists, biotechnologists, nanotechnologists, microbial biotechnologists, farmers, policymakers, and extension workers.
As industries evolve, the demand for innovative solutions intensifies, yet challenges persist in harnessing the full potential of edible electronics (EE). From navigating complex interdisciplinary landscapes to overcoming material limitations and technological hurdles, researchers and professionals face a myriad of obstacles in realizing EE's promises. The lack of comprehensive resources further compounds these challenges, leaving many needing more guidance to navigate this dynamic field effectively. Edible Electronics for Smart Technology Solutions serves as a beacon of knowledge and practical insights for those navigating the complexities of EE. This comprehensive guide offers a holistic approach, addressing critical issues such as energy harvesting, materials development, and technological integration. By identifying emerging trends and promoting cutting-edge solutions, the book equips readers with the tools and strategies to overcome challenges and drive innovation.
Chitosan-Based Nanoparticles for Biomedical Applications explores the use of chitosan-based nanoparticles as a sustainable solution for the development of improved therapeutic and diagnostic techniques. A range of biomedical applications is reviewed, including treatment against highly resistant bacteria and parasites; tissue regeneration; drug delivery, and more. Moreover, the application of chitosan-based nanoparticles for the effective delivery of hormones, vaccines, phytochemicals, nutraceuticals, and their application in immobilization of enzymes is also discussed in detail. This book provides a state-of-the-art overview for materials scientists, pharmaceutical scientists, and researchers with an interest in the development of novel materials for therapeutics. - Provides a comprehensive overview of chitosan-based nanoparticles, from extraction, synthesis and characterization to biomedical applications, clinical trials and toxicological considerations - Covers a range of biomedical applications, including nutraceuticals, wound healing, antimicrobial treatment, cancer therapeutics, and more - Utilizes an interdisciplinary approach, combining materials science, biochemistry, and bioscience inputs to appeal to a broad audience
Ocean plays a significant role in energy production, human health and economy. Seawater, seaweed, microalgae, yeast, bacteria act as feedstock for biofuels and bioproducts. This book focuses on the application of marine biomass for production of energy, fertilizers, nutraceuticals, pharmaceuticals, cosmetics, bioplastics and other value-added products. It presents technological advancements and optimization strategies for enhancing process efficiency, overcoming challenges and maximizing the potential of marine-based biorefinery. It also describes how marine resources can be applied to wastewater treatment, eco-restoration, environment protection and sustainable development.
The implementation of robotics and automation in the food sector offers great potential for improved safety, quality and profitability by optimising process monitoring and control. Robotics and automation in the food industry provides a comprehensive overview of current and emerging technologies and their applications in different industry sectors.Part one introduces key technologies and significant areas of development, including automatic process control and robotics in the food industry, sensors for automated quality and safety control, and the development of machine vision systems. Optical sensors and online spectroscopy, gripper technologies, wireless sensor networks (WSN) and supervisory control and data acquisition (SCADA) systems are discussed, with consideration of intelligent quality control systems based on fuzzy logic. Part two goes on to investigate robotics and automation in particular unit operations and industry sectors. The automation of bulk sorting and control of food chilling and freezing is considered, followed by chapters on the use of robotics and automation in the processing and packaging of meat, seafood, fresh produce and confectionery. Automatic control of batch thermal processing of canned foods is explored, before a final discussion on automation for a sustainable food industry.With its distinguished editor and international team of expert contributors, Robotics and automation in the food industry is an indispensable guide for engineering professionals in the food industry, and a key introduction for professionals and academics interested in food production, robotics and automation. - Provides a comprehensive overview of current and emerging robotics and automation technologies and their applications in different industry sectors - Chapters in part one cover key technologies and significant areas of development, including automatic process control and robotics in the food industry and sensors for automated quality and safety control - Part two investigates robotics and automation in particular unit operations and industry sectors, including the automation of bulk sorting and the use of robotics and automation in the processing and packaging of meat, seafood, fresh produce and confectionery
It is essential to harness the potential of nanotechnology in a rapidly evolving industrial environment. As industries grapple with the demand for more advanced, efficient, and sustainable solutions, the intricate amalgamation of chemistry, materials science, physics, biology, and technology in nanotechnology emerges as both a beacon of promise and a complex puzzle. The groundbreaking book, Sustainable Approach to Protective Nanocoatings, serves as a transformative solution. Tailored for academic scholars seeking comprehensive insights, this book navigates the labyrinth of nanotechnology with precision, offering a roadmap for leveraging nanostructured materials and coatings to meet the demands of the modern industrial world. By seamlessly weaving together the intricate tapestry of research methodologies, applications, and technological advances, the book emerges as an indispensable resource for those poised at the intersection of academia and industry.