Download Free Senolytics In Disease Ageing And Longevity Book in PDF and EPUB Free Download. You can read online Senolytics In Disease Ageing And Longevity and write the review.

This book offers comprehensive information on the new and rapidly evolving science of identifying and targeting senescent cells, and on the exciting prospect of new diagnostic and therapeutic opportunities for stopping, and even reversing, the progression of disease and the deterioration of the human body due to ageing. According to recent United Nations data, by 2050 one in six people worldwide will be older than age 65, with peaks rising to one in four people in Europe and North America. Remarkably, the number of persons aged 80 years or older is expected to triple, from 143 million in 2019 to 426 million in 2050. First documented in the 1960s, the concept of cellular senescence as an underlying cause of ageing has been established in the course of the last decade. Using genetically engineered mouse models, researchers have demonstrated that the selective elimination of senescent cells can block and even reverse a number of age-related dysfunctions and pathologies, promoting both better health and longer life in the elderly. These include cardiovascular diseases; neurological disorders; type 1 and type 2 diabetes; inflammatory diseases; fibrosis; geriatric syndromes; chronic diseases resulting in organ dysfunction; the integrity of the musculoskeletal system; and cancer. Some senolytic agents have already progressed into trials. These include UBX0101 for the treatment of osteoarthritis (now in phase II), a cocktail of dasatinib and quercetin for the management of idiopathic pulmonary fibrosis and chronic kidney disease, and ABT-263 in combination with senescence-inducing chemotherapies for the treatment of advanced solid tumours. In addition, the book discusses pathways to early phase clinical trials and translational approaches in medicine and ageing, highlighting new opportunities as well as current limitations, challenges and alternatives. Given its scope, it will benefit a broad audience of advanced educators, researchers, graduate students and practitioners.
Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.
“A fascinating look at how scientists are working to help doctors treat the aging process itself, helping us all to lead longer, healthier lives.” —Sanjay Gupta, MD Aging—not cancer, not heart disease—is the underlying cause of most human death and suffering. The same cascade of biological changes that renders us wrinkled and gray also opens the door to dementia and disease. We work furiously to conquer each individual disease, but we never think to ask: Is aging itself necessary? Nature tells us it is not: there are tortoises and salamanders who are spry into old age and whose risk of dying is the same no matter how old they are, a phenomenon known as “biological immortality.” In Ageless, Andrew Steelecharts the astounding progress science has made in recent years to secure the same for humans: to help us become old without getting frail, to live longer without ill health or disease.
This edited volume is a compilation of 30 articles discussing what constitutes food for health and longevity. The aim is to provide up-to-date information, insights, and future tendencies in the ongoing scientific research about nutritional components, food habits and dietary patterns in different cultures. The health-sustaining and health-promoting effects of food are certainly founded in its overall composition of macronutrients and micronutrients. However, the consumption of these nutrients is normally in the form of raw or prepared food from the animal and plant sources. The book is divided into four parts and a conclusion, and successfully convenes the well-established information and knowledge, along with the personal views of a diversified group of researchers and academicians on the multifaceted aspects of nutrition, food and diet. The first part reviews the scientific information about proteins, carbohydrates, fats and oils, micronutrients, pro- and pre-biotics, and hormetins, along with a discussion of the evolutionary principles and constraints about what is optimal food, if any. The second part discusses various kinds of foods and food supplements with respect to their claimed benefits for general health and prevention of some diseases. The third part brings in the cultural aspects, such as what are the principles of healthy eating according to the traditional Chinese and Indian systems, what is the importance of mealing times and daily rhythms, and how different cultures have developed different folk wisdoms for eating for health, longevity and immortality. In the part four, various approaches which are either already in practice or are still in the testing and research phases are discussed and evaluated critically, for example intermittent fasting and calorie restriction, food-based short peptides, senolytics, Ayurvedic compounds, optimal food for old people, and food for the prevention of obesity and other metabolic disorders. The overreaching aim of this book is to inform, inspire and encourage students, researchers, educators and medical health professionals thinking about food and food habits in a holistic context of our habits, cultures and patterns. Food cannot be reduced to a pill of nutritional components. Eating food is a complex human behavior culturally evolved over thousands of years. Perhaps the old adage “we are what we eat” needs to be modified to “we eat what we are”.
This authoritative handbook covers all aspects of immunosenescence, with contributions from experts in the research and clinical areas. It examines methods and models for studying immunosenescence; genetics; mechanisms including receptors and signal transduction; clinical relevance in disease states including infections, autoimmunity, cancer, metabolic syndrome, neurodegenerative diseases, frailty and osteoporosis; and much more.
How do some people avoid the slowing down, deteriorating, and weakening that plagues many of their peers decades earlier? Are they just lucky? Or do they know something the rest of us don’t? Is it possible to grow older without getting sicker? What if you could look and feel fifty through your eighties and nineties? Founder of the Institute for Aging Research at the Albert Einstein College of Medicine and one of the leading pioneers of longevity research, Dr. Nir Barzilai’s life’s work is tackling the challenges of aging to delay and prevent the onset of all age-related diseases including “the big four”: diabetes, cancer, heart disease, and Alzheimer’s. One of Dr. Barzilai’s most fascinating studies features volunteers that include 750 SuperAgers—individuals who maintain active lives well into their nineties and even beyond—and, more importantly, who reached that ripe old age never having experienced cardiovascular disease, cancer, diabetes, or cognitive decline. In Age Later, Dr. Barzilai reveals the secrets his team has unlocked about SuperAgers and the scientific discoveries that show we can mimic some of their natural resistance to the aging process. This eye-opening and inspirational book will help you think of aging not as a certainty, but as a phenomenon—like many other diseases and misfortunes—that can be targeted, improved, and even cured.
A NEW YORK TIMES BESTSELLER “Brilliant and enthralling.”​ —The Wall Street Journal A paradigm-shifting book from an acclaimed Harvard Medical School scientist and one of Time’s most influential people. It’s a seemingly undeniable truth that aging is inevitable. But what if everything we’ve been taught to believe about aging is wrong? What if we could choose our lifespan? In this groundbreaking book, Dr. David Sinclair, leading world authority on genetics and longevity, reveals a bold new theory for why we age. As he writes: “Aging is a disease, and that disease is treatable.” This eye-opening and provocative work takes us to the frontlines of research that is pushing the boundaries on our perceived scientific limitations, revealing incredible breakthroughs—many from Dr. David Sinclair’s own lab at Harvard—that demonstrate how we can slow down, or even reverse, aging. The key is activating newly discovered vitality genes, the descendants of an ancient genetic survival circuit that is both the cause of aging and the key to reversing it. Recent experiments in genetic reprogramming suggest that in the near future we may not just be able to feel younger, but actually become younger. Through a page-turning narrative, Dr. Sinclair invites you into the process of scientific discovery and reveals the emerging technologies and simple lifestyle changes—such as intermittent fasting, cold exposure, exercising with the right intensity, and eating less meat—that have been shown to help us live younger and healthier for longer. At once a roadmap for taking charge of our own health destiny and a bold new vision for the future of humankind, Lifespan will forever change the way we think about why we age and what we can do about it.
Epigenetics of Aging and Longevity provides an in-depth analysis of the epigenetic nature of aging and the role of epigenetic factors in mediating the link between early-life experiences and life-course health and aging. Chapters from leading international contributors explore the effect of adverse conditions in early-life that may result in disrupted epigenetic pathways, as well as the potential to correct these disrupted pathways via targeted therapeutic interventions. Intergenerational epigenetic inheritance, epigenetic drug discovery, and the role of epigenetic mechanisms in regulating specific age-associated illnesses—including cancer and cardiovascular, metabolic, and neurodegenerative diseases—are explored in detail. This book will help researchers in genomic medicine, epigenetics, and biogerontology better understand the epigenetic determinants of aging and longevity, and ultimately aid in developing therapeutics to extend the human life-span and treat age-related disease. - Offers a comprehensive overview of the epigenetic nature of aging, as well as the impact of epigenetic factors on longevity and regulating age-related disease - Provides readers with clinical and epidemiological evidence for the role of epigenetic mechanisms in mediating the link between early-life experiences, life-course health and aging trajectory - Applies current knowledge of epigenetic regulatory pathways towards developing therapeutic interventions for age-related diseases and extending the human lifespan
Aging is a natural phenomenon that is peculiar to all living things. However, accumulating findings indicate that senescence could be postponed or prevented by certain approaches. Substantial evidence has emerged supporting the possibility of radical human health and lifespan extension, in particular through pharmacological modulation of aging. A number of natural dietary ingredients and synthetic drugs have been assumed to have geroprotective potential. In the development of anti-aging therapeutics, several cell, insect, and animal models may provide useful starting points prior to human studies. This book provides an overview of current research aimed to search for life-extending medications and describes pharmacological aspects of anti-aging medicine. Readers are introduced to the fascinating historical background of geroprotection in the first chapter. In-depth information on models for investigating geroprotective drugs precedes a section covering anti-aging properties of pharmaceutical compounds, such as calorie restriction mimetics, autophagy inducers, senolytics and mitochondrial antioxidants. Finally, strategies to translate discoveries from aging research into drugs and healthcare policy perspectives on anti-ageing medicine are provided to give a complete picture of the field. A timely and carefully edited collection of chapters by leading researchers in the field, this book will be a fascinating and useful resource for pharmacologists, gerontologists and any scientifically interested person wishing to know more about the current status of research into anti-aging remedies, challenges and opportunities.
This book provides the first comprehensive overview of a new scientific discipline termed Geroscience. Geroscience examines the molecular and cellular mechanisms that might explain why aging is the main risk factor for most chronic diseases affecting the elderly population. Over the past few decades, researchers have made impressive progress in understanding the genetics, biology and physiology of aging. This book presents vital research that can help readers to better understand how aging is a critical malleable risk factor in most chronic diseases, which, in turn, could lead to interventions that can help increase a healthy lifespan, or ‘healthspan.’ The book begins with an analysis of the Geroscience hypothesis, as well as the epidemiological underpinnings that define aging as a candidate main risk factor for most chronic diseases. Next, each chapter focuses on one particular disease, or group of diseases, with an emphasis on how basic molecular and cellular biology might explain why aging is a major risk factor for it. Coverage in the book includes: cancer, cardiovascular disease, dementias, stroke, Parkinson's and Alzheimer’s diseases, osteoporosis, arthritis, diabetes asthma, emphysema, kidney disease, vision impairment, and AIDS/HIV. It finishes with a chapter on pain in the elderly and an overview of future steps needed to bring the newly acquired knowledge into the clinic and the public at large.