Download Free Semiparametric Estimation Of The Generalized Regression Model Book in PDF and EPUB Free Download. You can read online Semiparametric Estimation Of The Generalized Regression Model and write the review.

This volume consists of the published proceedings of the GLIM 95 Conference, held at Lancaster University, UK, from 16-19 September 1995. This is the second of such proceedings, the first of which was published as No 14 of the Springer-Verlag Lecture Notes in Statistics (Gilchrist, ed,1992). Since the 1992 conference there has been a modest update of the GLIM system, called GLIM 3.77. This incorporates some minor but pleasant enhancements and these are outlined in these proceedings by payne and Webb. With the completion of GLIM 3.77, future developments of the GLIM system are again under active review. Aitkin surveys possible directions for GLIM. one sOlMlWhat different avenue for analysing generalized linear models is provided by the GENSTAT system; Lane and payne discuss the new interactive facilities p ided by version 5 of GENSTAT. On the theory Side, NeIder extends the concept and use of quasi-likelihood, giving useful forms of variance function and a method of introducing a random element into the linear predictor. Longford discusses one approach to the analysis of clustered observations (subjects within groups). Green and Yandell introduce 'semi-parametric modelling', allowing a compromise between parametriC and non-parametriC modelling. They modify the linear predictor by the addition of a ( smooth) curve, and estimate parameters by maximising a penalised log-likelihood. Hastie and Tibshirani introduce generalized additive models, introducing a linear predictor of the form 11 = (X + Efj(xj), with the fj estimated from the data by a weighted average of neighbouring observations.
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.
Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
This easy-to-follow applied book on semiparametric regression methods using R is intended to close the gap between the available methodology and its use in practice. Semiparametric regression has a large literature but much of it is geared towards data analysts who have advanced knowledge of statistical methods. While R now has a great deal of semiparametric regression functionality, many of these developments have not trickled down to rank-and-file statistical analysts. The authors assemble a broad range of semiparametric regression R analyses and put them in a form that is useful for applied researchers. There are chapters devoted to penalized spines, generalized additive models, grouped data, bivariate extensions of penalized spines, and spatial semi-parametric regression models. Where feasible, the R code is provided in the text, however the book is also accompanied by an external website complete with datasets and R code. Because of its flexibility, semiparametric regression has proven to be of great value with many applications in fields as diverse as astronomy, biology, medicine, economics, and finance. This book is intended for applied statistical analysts who have some familiarity with R.
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
This book offers a detailed application guide to XploRe - an interactive statistical computing environment. As a guide it contains case studies of real data analysis situations. It helps the beginner in statistical data analysis to learn how XploRe works in real life applications. Many examples from practice are discussed and analysed in full length. Great emphasis is put on a graphic based understanding of the data interrelations. The case studies include: Survival modelling with Cox's proportional hazard regression, Vitamin C data analysis with Quantile Regression, and many others.
Presents familiar elements of estimation theory from an analog perspective discussing recent developments in the theory of analog estimation and new results that offer flexibility in empirical research. Annotation copyrighted by Book News, Inc., Portland, OR
Panel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.