Download Free Seminar On Transformation Groups Am 46 Volume 46 Book in PDF and EPUB Free Download. You can read online Seminar On Transformation Groups Am 46 Volume 46 and write the review.

The description for this book, Seminar on Transformation Groups. (AM-46), Volume 46, will be forthcoming.
This book carefully presents a unified treatment of equivariant Poincaré duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
This book discusses the geometrical aspects of Kaluza-Klein theories. The ten chapters cover topics from the differential and Riemannian manifolds to the reduction of Einstein-Yang-Mills action. It would definitely prove interesting reading to physicists and mathematicians, theoretical and experimental.
This book discusses the geometrical aspects of Kaluza-Klein theories. The ten chapters cover topics from the differential and Riemannian manifolds to the reduction of Einstein-Yang-Mills action. It would definitely prove interesting reading to physicists and mathematicians, theoretical and experimental.
Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.
The description for this book, Seminar on Transformation Groups. (AM-46), Volume 46, will be forthcoming.
MEMS Vibratory Gyroscopes provides a solid foundation in the theory and fundamental operational principles of micromachined vibratory rate gyroscopes, and introduces structural designs that provide inherent robustness against structural and environmental variations. In part one, the dynamics of the vibratory gyroscope sensing element is developed, common micro-fabrication processes and methods commonly used in inertial sensor production are summarized, design of mechanical structures for both linear and torsional gyroscopes are presented, and electrical actuation and detection methods are discussed along with details on experimental characterization of MEMS gyroscopes. In part two, design concepts that improve robustness of the micromachined sensing element are introduced, supported by constructive computational examples and experimental results illustrating the material. MEMS Vibratory Gyroscopes is a must have book for engineers in both industry and academia who specialize in the design and manufacture of gyroscopes. Readers will find: A unique balance between theory and practical design issues. Comprehensive and detailed information outlining the mathematical models of the mechanical structure and system-level sensor design. Solid background Information on mechanical and electrical design, fabrication, packaging, testing and characterization. About The MEMs Reference Shelf: "The MEMs Reference Shelf is a series devoted to Micro-Electro-Mechanical Systems (MEMs) which combine mechanical, electrical, optical, or fluidic elements on a common microfabricated substrate to create sensors, actuators, and microsystems. The series, authored by leading MEMs practitioners, strives to provide a framework where basic principles, known methodologies and new applications are integrated in a coherent and consistent manner." STEPHEN D. SENTURIA Massachusetts Institute of Technology, Professor of Electrical Engineering, Emeritus
Contains sections on Algebraic $K$- and $L$-theory, Surgery and its applications, Group actions.
Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder.
Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also find the book a valuable resource.