Download Free Semiconductors Probed By Ultrafast Laser Spectroscopy Pt I Book in PDF and EPUB Free Download. You can read online Semiconductors Probed By Ultrafast Laser Spectroscopy Pt I and write the review.

Semiconductors Probed by Ultrafast Laser Spectroscopy, Volume 1 discusses the use of ultrafast laser spectroscopy in studying fast physics in semiconductors. It reviews progress on the experimental and theoretical understanding of ultrafast events that occur on a picosecond and nanosecond time scale. This volume first explores the relaxation of energy and the momentum of hot carriers and then turns to relaxation of plasmas and phonons. It also discusses the dynamics of excitons, polaritons, and excitonic molecules and reviews transient transport and diffusion of carriers. Scientists, engineers, and graduate students will find this book invaluable.
Semiconductors Probed by Ultrafast Laser Spectroscopy, Volume II discusses the use of ultrafast laser spectroscopy in studying fast physics in semiconductors. It reviews progress on the experimental and theoretical understanding of ultrafast events that occur on a picosecond and nanosecond time scale. This volume discusses electronic relaxation in amorphous semiconductors and the physical mechanisms during and after the interaction of an intense laser pulse with a semiconductor. It also covers the relaxation of carriers in semiconductors; transient optical pulse propagation; and methods of time-resolved spectroscopy. Scientists, engineers, and graduate students will find this book invaluable.
Semiconductors Probed by Ultrafast Laser Spectroscopy, Volume 1 discusses the use of ultrafast laser spectroscopy in studying fast physics in semiconductors. It reviews progress on the experimental and theoretical understanding of ultrafast events that occur on a picosecond and nanosecond time scale. This volume first explores the relaxation of energy and the momentum of hot carriers and then turns to relaxation of plasmas and phonons. It also discusses the dynamics of excitons, polaritons, and excitonic molecules and reviews transient transport and diffusion of carriers. Scientists, engineers ...
Nonequilibrium hot charge carriers play a crucial role in the physics and technology of semiconductor nanostructure devices. This book, one of the first on the topic, discusses fundamental aspects of hot carriers in quasi-two-dimensional systems and the impact of these carriers on semiconductor devices. The work will provide scientists and device engineers with an authoritative review of the most exciting recent developments in this rapidly moving field. It should be read by all those who wish to learn the fundamentals of contemporary ultra-small, ultra-fast semiconductor devices. - Topics covered include - Reduced dimensionality and quantum wells - Carrier-phonon interactions and hot phonons - Femtosecond optical studies of hot carrier - Ballistic transport - Submicron and resonant tunneling devices
The Third Binational USA-USSR Symposium titled "Laser Optics of Con densed Matter" was held in Leningrad 1 June - 5 June 1987. This volume con tains the full text of 64 papers presented at (or prepared for) the Symposium in both plenary and poster sessions. This Symposium reestablished the very productive series of "Light Scattering" Binational Symposia which were initi ated in Moscow in 1975. Unfortunately there was an eight-year hiatus follow ing the Second Symposium in New York (1979). This interval, caused by serious chilling of the climate of USA-USSR collaboration, deprived the active scien tists on both sides of the opportunity to meet and interact in the active format of a conference. During this eight year interval there has been very rapid and intense development of scientific activity in the general area of laser optics phe nomena. The development of ultrafast laser sources has permitted rapid advances in time resolved spectroscopy and ultrafast processes; the field of optical bistability and strong nonlinearity became a hot topic; and intense work is now underway to clarify ideas of photon localization. These new dev elopments complement many advances in the study of low dimensional systems such as surfaces, new work on phase transitions, and novel studies of elemen tary excitations such as polariton-excitons in localized environments such as quantum wells and heterojunctions.
A comprehensive account of the latest developments in the rapidly expanding area of Semiconductor Technology. Main topics covered include real space transfer/heterostructures, ultrafast studies, optical studies, transport theory, devices, ballistic transport, scattering processes and hot phonons, tunnelling, far infrared and magnetic field studies and impact ionization/noise/chaos. Other aspects include the use of femtosecond lasers in investigating transient hot carrier effects on femtosecond timescales, magnetotransport and carrier-carrier interactions.
This first book to focus on the important and topical effect of light on polymeric materials reflects the multidisciplinary nature of the topic, building a bridge between polymer chemistry and physics, photochemistry and photophysics, and materials science. Written by one experienced author, a consistent approach is maintained throughout, covering such applications as nonlinear optical materials, core materials for optical waveguides, photoresists in the production of computer chips, photoswitches and optical memories. Advanced reading for polymer, physical and organic chemists, manufacturers of optoelectronic devices, chemical engineers, and materials scientists.
This text deals with the advantages of rare earth activated phosphors for the development of solid state lighting technology and in enhancing the light conversion efficiency of Si solar cells. The book initiates with a short overview of the atomic and semiconductor theory followed by introduction to phosphor, its working mechanism, role of rare earth ions in the lighting and PV devices and host materials being used. Further, it introduces the applications of inorganic phosphor for the development of green energy and technology including advantages of UP/DC conversion phosphor layers in the enhancing the cell response of PV devices. Key Features: Focuses on discussion of phosphors for both solid state lighting and photovoltaics applications Provides introduction for practical applications including synthesis and characterization of phosphor materials Includes broad, in-depth introduction of semiconductors and related theory Enhances the basic understanding of optical properties for rare earth phosphors Covers up-conversion and down-conversion phosphor for energy harvesting applications
Ultrafast spectroscopy of semiconductors and semiconductor nanostructures is currently one of the most exciting areas of research in condensed-matter physics. Remarkable recent progress in the generation of tunable femtosecond pulses has allowed direct investigation of the most fundamental dynamical processes in semiconductors. This second edition presents the most striking recent advances in the techniques of ultrashort pulse generation and ultrafast spectroscopy; it discusses the physics of relaxation, tunneling and transport dynamics in semiconductors and semiconductor nanostructures following excitation by femtosecond laser pulses.
Discover the latest research in photocatalysis combined with foundational topics in basic physical and chemical photocatalytic processes In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution, distinguished researcher and editor Jennifer Strunk delivers a rigorous discussion of the two main topics in her field—energy conversion and depollution reactions. The book covers topics like water splitting, CO2 reduction, NOx abatement and harmful organics degradation. In addition to the latest research on these topics, the reference provides readers with fundamental information about elementary physical and chemical processes in photocatalysis that are extremely practical in this interdisciplinary field. It offers an excellent overview of modern heterogeneous photocatalysis and combines concepts from different viewpoints to allow researchers with backgrounds as varied as electrochemistry, material science, and semiconductor physics to begin developing solutions with photocatalysis. In addition to subjects like metal-free photocatalysts and photocarrier loss pathways in metal oxide absorber materials for photocatalysis explored with time-resolved spectroscopy, readers will also benefit from the inclusion of: Thorough introductions to kinetic and thermodynamic considerations for photocatalyst design and the logic, concepts, and methods of the design of reliable studies on photocatalysis Detailed explorations of in-situ spectroscopy for mechanistic studies in semiconductor photocatalysis and the principles and limitations of photoelectrochemical fuel generation Discussions of photocatalysis, including the heterogeneous catalysis perspective and insights into photocatalysis from computational chemistry Treatments of selected aspects of photoreactor engineering and defects in photocatalysis Perfect for photochemists, physical and catalytic chemists, electrochemists, and materials scientists, Heterogeneous Photocatalysis will also earn a place in the libraries of surface physicists and environmental chemists seeking up-to-date information about energy conversion and depollution reactions.