Download Free Semiconductor Silicon 1986 Book in PDF and EPUB Free Download. You can read online Semiconductor Silicon 1986 and write the review.

Semiconductor Silicon Crystal Technology provides information pertinent to silicon, which is the dominant material in the semiconductor industry. This book discusses the technology of integrated circuits (ICs) in electronic materials manufacturer. Comprised of eight chapters, this book provides an overview of the basic science, silicon materials, IC device fabrication processes, and their interaction for enhancing both the processes and materials. This text then proceeds with a discussion of the atomic structure and bonding mechanisms in order to understand the nature and formation of crystal structures, which are the fundamentals of material science. Other chapters consider the technological crystallography and classify natural crystal morphologies based on observation. The final chapter deals with the interrelationships among silicon material characteristics, circuit design, and IC fabrication in order to ensure the fabrication of very-large-scale-integration/ultra-large-scale-integration circuits. This book is a valuable resource for graduate students, physicists, engineers, materials scientists, and professionals involved in semiconductor industry.
This volume reviews the latest understanding of the behavior and roles of oxygen in silicon, which will carry the field into the ULSI era from the experimental and theoretical points of view. The fourteen chapters, written by recognized authorities representing industrial and academic institutions, cover thoroughly the oxygen related phenomena from the crystal growth to device fabrication processes, as well as indispensable diagnostic techniques for oxygen. - Comprehensive study of the behavior of oxygen in silicon - Discusses silicon crystals for VLSI and ULSI applications - Thorough coverage from crystal growth to device fabrication - Edited by technical experts in the field - Written by recognized authorities from industrial and academic institutions - Useful to graduate students, scientists in other disciplines, and active participants in the arena of silicon-based microelectronics research - 297 original line drawings
Retaining the comprehensive and in-depth approach that cemented the bestselling first edition's place as a standard reference in the field, the Handbook of Semiconductor Manufacturing Technology, Second Edition features new and updated material that keeps it at the vanguard of today's most dynamic and rapidly growing field. Iconic experts Robert Doering and Yoshio Nishi have again assembled a team of the world's leading specialists in every area of semiconductor manufacturing to provide the most reliable, authoritative, and industry-leading information available. Stay Current with the Latest Technologies In addition to updates to nearly every existing chapter, this edition features five entirely new contributions on... Silicon-on-insulator (SOI) materials and devices Supercritical CO2 in semiconductor cleaning Low-κ dielectrics Atomic-layer deposition Damascene copper electroplating Effects of terrestrial radiation on integrated circuits (ICs) Reflecting rapid progress in many areas, several chapters were heavily revised and updated, and in some cases, rewritten to reflect rapid advances in such areas as interconnect technologies, gate dielectrics, photomask fabrication, IC packaging, and 300 mm wafer fabrication. While no book can be up-to-the-minute with the advances in the semiconductor field, the Handbook of Semiconductor Manufacturing Technology keeps the most important data, methods, tools, and techniques close at hand.
Silicon is the most important material for the electronics industry. In modern microelectronics silicon devices like diodes and transistors play a major role, and devices like photodetectors or solar cells gain ever more importance. This concise handbook deals with one of the most important topics for the electronics industry. World renowned authors have contributed to this unique overview of the processing of silicon and silicon devices.
The second Edition of the Handbook of Silicon Wafer Cleaning Technology is intended to provide knowledge of wet, plasma, and other surface conditioning techniques used to manufacture integrated circuits. The integration of the clean processes into the device manufacturing flow will be presented with respect to other manufacturing steps such as thermal, implant, etching, and photolithography processes. The Handbook discusses both wet and plasma-based cleaning technologies that are used for removing contamination, particles, residue, and photoresist from wafer surfaces. Both the process and the equipment are covered. A review of the current cleaning technologies is included. Also, advanced cleaning technologies that are under investigation for next generation processing are covered; including supercritical fluid, laser, and cryoaerosol cleaning techniques. Additionally theoretical aspects of the cleaning technologies and how these processes affect the wafer is discussed such as device damage and surface roughening will be discussed. The analysis of the wafers surface is outlined. A discussion of the new materials and the changes required for the surface conditioning process used for manufacturing is also included. - Focused on silicon wafer cleaning techniques including wet, plasma, and other surface conditioning techniques used to manufacture integrated circuits - As this book covers the major technologies for removing contaminants, it is a reliable reference for anyone that manufactures integrated circuits, or supplies the semiconductor and microelectronics industries - Covers processes and equipment, as well as new materials and changes required for the surface conditioning process - Editors are two of the top names in the field and are both extensively published - Discusses next generation processing techniques including supercritical fluid, laser, and cryoaerosol
Containing over 200 papers, this volume contains the proceedings of two symposia in the E-MRS series. Part I presents a state of the art review of the topic - Carbon, Hydrogen, Nitrogen and Oxygen in Silicon and in Other Elemental Semiconductors. There was strong representation from the industrial laboratories, illustrating that the topic is highly relevant for the semiconductor industry. The second part of the volume deals with a topic which is undergoing a process of convergence with two concerns that are more particularly application oriented. Firstly, the advanced instrumentation which, through the use of atomic force and tunnel microscopies, high resolution electron microscopy and other high precision analysis instruments, now allows for direct access to atomic mechanisms. Secondly, the technological development which in all areas of applications, particularly in the field of microelectronics and microsystems, requires as a result of the miniaturisation race, a precise mastery of the microscopic mechanisms.
The explosive growth in the semiconductor industry has caused a rapid evolution of thin film materials that lend themselves to the fabrication of state-of-the-art semiconductor devices. Early in the 1960s an old research technique named chemical vapour phase deposition (CVD), which has several unique advantages, developed into the most widely used technique for thin film preparation in electronics technology. In the last 25 years, tremendous advances have been made in the science and technology of thin films prepared by means of CVD. This book presents in a single volume, an up-to-date overview of the important field of CVD processes which has never been completely reviewed previously. Contents: Part I. 1. Evolution of CVD Films. Introductory remarks. Short history of CVD thin films. II. Fundamentals. 2. Techniques of Preparing Thin Films. Electrolytic deposition techniques. Vacuum deposition techniques. Plasma deposition techniques. Liquid-phase deposition techniques. Solid-phase deposition techniques. Chemical vapour conversion of substrate. Chemical vapour deposition. Comparison between CVD and other thin film deposition techniques. 3. Chemical Processes Used in CVD. Introduction. Description of chemical reactions used in CVD. 4. Thermodynamics of CVD. Feasibility of a CVD process. Techniques for equilibrium calculations in CVD systems. Examples of thermodynamic studies of CVD systems. 5. Kinetics of CVD. Steps and control type of a CVD heterogeneous reaction. Influence of experimental parameters on thin film deposition rate. Continuous measurement of the deposition rate. Experimental methods for studying CVD kinetics. Role of homogeneous reactions in CVD. Mechanism of CVD processes. Kinetics and mechanism of dopant incorporation. Transport phenomena in CVD. Status of kinetic and mechanism investigations in CVD systems. 6. Measurement of Thin Film Thickness. Mechanical methods. Mechanical-optical methods. Optical methods. Electrical methods. Miscellaneous methods. 7. Nucleation and Growth of CVD Films. Stages in the nucleation and growth mechanism. Regimes of nucleation and growth. Nucleation theory. Dependence of nucleation on deposition parameters. Heterogeneous nucleation and CVD film structural forms. Homogeneous nucleation. Experimental techniques. Experimental results of CVD film nucleation. 8. Thin Film Structure. Techniques for studying thin film structure. Structural defects in CVD thin films. 9. Analysis of CVD Films. Analysis techniques of thin film bulk. Analysis techniques of thin film surfaces. Film composition measurement. Depth concentration profiling. 10. Properties of CVD Films. Mechanical properties. Thermal properties. Optical properties. Photoelectric properties. Electrical properties. Magnetic properties. Chemical properties. Part III. 11. Equipment and Substrates. Equipment for CVD. Safety in CVD. Substrates. 12. Preparation and Properties of Semiconducting Thin Films. Homoepitaxial semiconducting films. Heteroepitaxial semiconducting films. 13. Preparation and Properties of Amorphous Insulating Thin Films. Oxides. Nitrides and Oxynitrides. Polymeric thin films. 14. Preparation and Properties of Conductive Thin Films. Metals and metal alloys. Resistor materials. Transparent conducting films. Miscellaneous materials. 15. Preparation and Properties of Superconducting and Magnetic Thin Films. Superconducting materials. Magnetic materials. 16. Uses of CVD Thin Films. Applications in electronics and microelectronics. Applications in the field of microwaves and optoelectronics. Miscellaneous applications. Artificial heterostructures (Quantum wells, superlattices, monolayers, two-dimensional electron gases). Part V. 17. Present and Future Importance of CVD Films.