Download Free Semantics And Logics Of Computation Book in PDF and EPUB Free Download. You can read online Semantics And Logics Of Computation and write the review.

The aim of this volume is to present modern developments in semantics and logics of computation in a way that is accessible to graduate students. The book is based on a summer school at the Isaac Newton Institute and consists of a sequence of linked lecture course by international authorities in the area. The whole set have been edited to form a coherent introduction to these topics, most of which have not been presented pedagogically before.
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
This textbook aims to help the reader develop an in-depth understanding of logical reasoning and gain knowledge of the theory of computation. The book combines theoretical teaching and practical exercises; the latter is realised in Isabelle/HOL, a modern theorem prover, and PAT, an industry-scale model checker. I also give entry-level tutorials on the two software to help the reader get started. By the end of the book, the reader should be proficient in both software. Content-wise, this book focuses on the syntax, semantics and proof theory of various logics; automata theory, formal languages, computability and complexity. The final chapter closes the gap with a discussion on the insight that links logic with computation. This book is written for a high-level undergraduate course or a Master's course. The hybrid skill set of practical theorem proving and model checking should be helpful for the future of readers should they pursue a research career or engineering in formal methods.
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
This is a monograph about logic. Specifically, it presents the mathe matical theory of the logic of bunched implications, BI: I consider Bl's proof theory, model theory and computation theory. However, the mono graph is also about informatics in a sense which I explain. Specifically, it is about mathematical models of resources and logics for reasoning about resources. I begin with an introduction which presents my (background) view of logic from the point of view of informatics, paying particular attention to three logical topics which have arisen from the development of logic within informatics: • Resources as a basis for semantics; • Proof-search as a basis for reasoning; and • The theory of representation of object-logics in a meta-logic. The ensuing development represents a logical theory which draws upon the mathematical, philosophical and computational aspects of logic. Part I presents the logical theory of propositional BI, together with a computational interpretation. Part II presents a corresponding devel opment for predicate BI. In both parts, I develop proof-, model- and type-theoretic analyses. I also provide semantically-motivated compu tational perspectives, so beginning a mathematical theory of resources. I have not included any analysis, beyond conjecture, of properties such as decidability, finite models, games or complexity. I prefer to leave these matters to other occasions, perhaps in broader contexts.
OndrejMajer,Ahti-VeikkoPietarinen,andTeroTulenheimo 1 Games and logic in philosophy Recent years have witnessed a growing interest in the unifying methodo- gies over what have been perceived as pretty disparate logical ‘systems’, or else merely an assortment of formal and mathematical ‘approaches’ to phi- sophical inquiry. This development has largely been fueled by an increasing dissatisfaction to what has earlier been taken to be a straightforward outcome of ‘logical pluralism’ or ‘methodological diversity’. These phrases appear to re ect the everyday chaos of our academic pursuits rather than any genuine attempt to clarify the general principles underlying the miscellaneous ways in which logic appears to us. But the situation is changing. Unity among plurality is emerging in c- temporary studies in logical philosophy and neighbouring disciplines. This is a necessary follow-up to the intensive research into the intricacies of logical systems and methodologies performed over the recent years. The present book suggests one such peculiar but very unrestrained meth- ological perspective over the eld of logic and its applications in mathematics, language or computation: games. An allegory for opposition, cooperation and coordination, games are also concrete objects of formal study.
Explores quantum computation from the perspective of the branch of theoretical computer science known as semantics.
Develops a new logic paradigm which emphasizes evidence tracking, including theory, connections to other fields, and sample applications.
This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.
ACM Monograph Series: A Computational Logic focuses on the use of induction in proving theorems, including the use of lemmas and axioms, free variables, equalities, and generalization. The publication first elaborates on a sketch of the theory and two simple examples, a precise definition of the theory, and correctness of a tautology-checker. Topics include mechanical proofs, informal development, formal specification of the problem, well-founded relations, natural numbers, and literal atoms. The book then examines the use of type information to simplify formulas, use of axioms and lemmas as rewrite rules, and the use of definitions. Topics include nonrecursive functions, computing values, free variables in hypothesis, infinite backwards chaining, infinite looping, computing type sets, and type prescriptions. The manuscript takes a look at rewriting terms and simplifying clauses, eliminating destructors and irrelevance, using equalities, and generalization. Concerns include reasons for eliminating isolated hypotheses, precise statement of the generalization heuristic, restricting generalizations, precise use of equalities, and multiple destructors and infinite looping. The publication is a vital source of data for researchers interested in computational logic.