Download Free Semantic Web And Model Driven Engineering Book in PDF and EPUB Free Download. You can read online Semantic Web And Model Driven Engineering and write the review.

The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and semantics. It focuses on using modeling languages as programming languages. Among many areas of application, we highlight the area of configuration management. Consider the example of a telecommunication company, where managing the multiple configurations of network devices (routers, hubs, modems, etc.) is crucial. Enterprise systems identify and document the functional and physical characteristics of network devices, and control changes to those characteristics. Applying the integration of semantic web and model-driven software development allows for (1) explicitly specifying configurations of network devices with tailor-made languages, (2) for checking the consistency of these specifications (3) for defining a vocabulary to share device specifications across enterprise systems. By managing configurations with consistent and explicit concepts, we reduce cost and risk, and enhance agility in response to new requirements in the telecommunication area. This book examines the synergy between semantic web and model-driven software development. It brings together advances from disciplines like ontologies, description logics, domain-specific modeling, model transformation and ontology engineering to take enterprise computing to the next level.
The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and semantics. It focuses on using modeling languages as programming languages.
Defining a formal domain ontology is considered a useful, not to say necessary step in almost every software project. This is because software deals with ideas rather than with self-evident physical artefacts. However, this development step is hardly ever done, as ontologies rely on well-defined and semantically powerful AI concepts such as description logics or rule-based systems, and most software engineers are unfamiliar with these. This book fills this gap by covering the subject of MDA application for ontology development on the Semantic Web. The writing is technical yet clear, and is illustrated with examples. The book is supported by a website.
The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and semantics. It focuses on using modeling languages as programming languages. Among many areas of application, we highlight the area of configuration management. Consider the example of a telecommunication company, where managing the multiple configurations of network devices (routers, hubs, modems, etc.) is crucial. Enterprise systems identify and document the functional and physical characteristics of network devices, and control changes to those characteristics. Applying the integration of semantic web and model-driven software development allows for (1) explicitly specifying configurations of network devices with tailor-made languages, (2) for checking the consistency of these specifications (3) for defining a vocabulary to share device specifications across enterprise systems. By managing configurations with consistent and explicit concepts, we reduce cost and risk, and enhance agility in response to new requirements in the telecommunication area. This book examines the synergy between semantic web and model-driven software development. It brings together advances from disciplines like ontologies, description logics, domain-specific modeling, model transformation and ontology engineering to take enterprise computing to the next level.
Defining a formal domain ontology is considered a useful, not to say necessary step in almost every software project. This is because software deals with ideas rather than with self-evident physical artefacts. However, this development step is hardly ever done, as ontologies rely on well-defined and semantically powerful AI concepts such as description logics or rule-based systems, and most software engineers are unfamiliar with these. This book fills this gap by covering the subject of MDA application for ontology development on the Semantic Web. The writing is technical yet clear, and is illustrated with examples. The book is supported by a website.
Databases have been designed to store large volumes of data and to provide efficient query interfaces. Semantic Web formats are geared towards capturing domain knowledge, interlinking annotations, and offering a high-level, machine-processable view of information. However, the gigantic amount of such useful information makes efficient management of it increasingly difficult, undermining the possibility of transforming it into useful knowledge. The research presented by De Virgilio, Giunchiglia and Tanca tries to bridge the two worlds in order to leverage the efficiency and scalability of database-oriented technologies to support an ontological high-level view of data and metadata. The contributions present and analyze techniques for semantic information management, by taking advantage of the synergies between the logical basis of the Semantic Web and the logical foundations of data management. The book’s leitmotif is to propose models and methods especially tailored to represent and manage data that is appropriately structured for easier machine processing on the Web. After two introductory chapters on data management and the Semantic Web in general, the remaining contributions are grouped into five parts on Semantic Web Data Storage, Reasoning in the Semantic Web, Semantic Web Data Querying, Semantic Web Applications, and Engineering Semantic Web Systems. The handbook-like presentation makes this volume an important reference on current work and a source of inspiration for future development, targeting academic and industrial researchers as well as graduate students in Semantic Web technologies or database design.
Over the last decade, ontology has become an important modeling component in software engineering. Semantic Web Enabled Software Engineering presents some critical findings on opening a new direction of the research of Software Engineering, by exploiting Semantic Web technologies. Most of these findings are from selected papers from the Semantic Web Enabled Software Engineering (SWESE) series of workshops starting from 2005. Edited by two leading researchers, this advanced text presents a unifying and contemporary perspective on the field. The book integrates in one volume a unified perspective on concepts and theories of connecting Software Engineering and Semantic Web. It presents state-of-the-art techniques on how to use Semantic Web technologies in Software Engineering and introduces techniques on how to design ontologies for Software Engineering.
This book is about a significant step forward in software development. It brings state-of-the-art ontology reasoning into mainstream software development and its languages. Ontology Driven Software Development is the essential, comprehensive resource on enabling technologies, consistency checking and process guidance for ontology-driven software development (ODSD). It demonstrates how to apply ontology reasoning in the lifecycle of software development, using current and emerging standards and technologies. You will learn new methodologies and infrastructures, additionally illustrated using detailed industrial case studies. The book will help you: Learn how ontology reasoning allows validations of structure models and key tasks in behavior models. Understand how to develop ODSD guidance engines for important software development activities, such as requirement engineering, domain modeling and process refinement. Become familiar with semantic standards, such as the Web Ontology Language (OWL) and the SPARQL query language. Make use of ontology reasoning, querying and justification techniques to integrate software models and to offer guidance and traceability supports. This book is helpful for undergraduate students and professionals who are interested in studying how ontologies and related semantic reasoning can be applied to the software development process. In addition, itwill also be useful for postgraduate students, professionals and researchers who are going to embark on their research in areas related to ontology or software engineering.
This is the first book to explore how Semantic Web technologies (SWTs) can be used to create intelligent engineering applications (IEAs). Technology-specific chapters reflect the state of the art in relevant SWTs and offer guidelines on how they can be applied in multi-disciplinary engineering settings characteristic of engineering production systems. In addition, a selection of case studies from various engineering domains demonstrate how SWTs can be used to create IEAs that enable, for example, defect detection or constraint checking. Part I “Background and Requirements of Industrie 4.0 for Semantic Web Solutions” provides the background information needed to understand the book and addresses questions concerning the semantic challenges and requirements of Industrie 4.0, and which key SWT capabilities may be suitable for implementing engineering applications. In turn, Part II “Semantic Web-Enabled Data Integration in Multi-Disciplinary Engineering” focuses on how SWTs can be used for data integration in heterogeneous, multi-disciplinary engineering settings typically encountered in the creation of flexible production systems. Part III “Creating Intelligent Applications for Multi-Disciplinary Engineering” demonstrates how the integrated engineering data can be used to support the creation of IEAs, while Part IV “Related and Emerging Trends in the Use of Semantic Web in Engineering” presents an overview of the broader spectrum of approaches that make use of SWTs to support engineering settings. A final chapter then rounds out the book with an assessment of the strengths, weaknesses and compatibilities of SWTs and an outlook on future opportunities for applying SWTs to create IEAs in flexible industrial production systems. This book seeks to build a bridge between two communities: industrial production on one hand and Semantic Web on the other. Accordingly, stakeholders from both communities should find this book useful in their work. Semantic Web researchers will gain a better understanding of the challenges and requirements of the industrial production domain, offering them guidance in the development of new technologies and solutions for this important application area. In turn, engineers and managers from engineering domains will arrive at a firmer grasp of the benefits and limitations of using SWTs, helping them to select and adopt appropriate SWTs more effectively. In addition, researchers and students interested in industrial production-related issues will gain valuable insights into how and to what extent SWTs can help to address those issues.