Download Free Self Similar Groups Book in PDF and EPUB Free Download. You can read online Self Similar Groups and write the review.

Self-similar groups (groups generated by automata) appeared initially as examples of groups that are easy to define but that enjoy exotic properties like nontrivial torsion, intermediate growth, etc. The book studies the self-similarity phenomenon in group theory and shows its intimate relation with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. The relation is established through the notions of the iterated monodromy group and the limit space, which are the central topics of the book. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. It is shown in particular how Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties appear now not just as isolated examples but as naturally defined iterated monodromy groups of rational functions. The book is intended to be accessible to a wide mathematical readership, including graduate students interested in group theory and dynamical systems.
Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.
The book explains the classification of a set of Walsh functions into distinct self-similar groups and subgroups, where the members of each subgroup possess distinct self-similar structures. The observations on self-similarity presented provide valuable clues to tackling the inverse problem of synthesis of phase filters. Self-similarity is observed in the far-field diffraction patterns of the corresponding self-similar filters. Walsh functions form a closed set of orthogonal functions over a prespecified interval, each function taking merely one constant value (either +1 or −1) in each of a finite number of subintervals into which the entire interval is divided. The order of a Walsh function is equal to the number of zero crossings within the interval. Walsh functions are extensively used in communication theory and microwave engineering, as well as in the field of digital signal processing. Walsh filters, derived from the Walsh functions, have opened up new vistas. They take on values, either 0 or π phase, corresponding to +1 or -1 of the Walsh function value.
Selected papers from 'Groups St Andrews 2005' cover a wide spectrum of modern group theory.
This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
This book is devoted to group-theoretic aspects of topological dynamics such as studying groups using their actions on topological spaces, using group theory to study symbolic dynamics, and other connections between group theory and dynamical systems. One of the main applications of this approach to group theory is the study of asymptotic properties of groups such as growth and amenability. The book presents recently developed techniques of studying groups of dynamical origin using the structure of their orbits and associated groupoids of germs, applications of the iterated monodromy groups to hyperbolic dynamical systems, topological full groups and their properties, amenable groups, groups of intermediate growth, and other topics. The book is suitable for graduate students and researchers interested in group theory, transformations defined by automata, topological and holomorphic dynamics, and theory of topological groupoids. Each chapter is supplemented by exercises of various levels of complexity.
Collects papers that reflect some of the directions of research in two closely related fields: Complex Dynamics and Renormalization in Dynamical Systems. This title contains papers that introduces the reader to this fascinating world and a related area of transcendental dynamics. It also includes open problems and computer simulations.
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.