Download Free Self Organizing Control Of Networked Systems Book in PDF and EPUB Free Download. You can read online Self Organizing Control Of Networked Systems and write the review.

This thesis presents a novel distributed control paradigm for networked control systems in which the local control units of the subsystems exchange information, whenever this is necessary to fulfill an overall control aim. The local control units act in a self-organized way, which means that they adapt their communication structure depending on the current situation of the subsystems based on locally available information only. A new controller structure is proposed. The local control units are divided into three components fulfilling universal tasks to generate a situation-dependent communication structure: The feedback unit performs a local feedback by using local measurements to fulfill basic performance requirements. The observation unit detects the current situation of the subsystem by evaluating locally available information. The decision unit decides about the transmission of information from the corresponding subsystem to other local control units. Two self-organizing controllers for physically interconnected systems in which the local control units adapt the communication among each other depending on the current disturbances are introduced. Furthermore, three novel self-organizing controllers for synchronizing multi-agent systems within leader-follower structures by adapting the communication structure to situations like set-point changes, disturbances and communication faults are proposed. The concepts are applied in order to control a water supply system and a robot formation.
This practical guide shows how to facilitate collaboration among diverse individuals and organizations to navigate complexity and create change in our interconnected world. The social and environmental challenges we face today are not only complex, they are also systemic and structural and have no obvious solutions. They require diverse combinations of people, organizations, and sectors to coordinate actions and work together even when the way forward is unclear. Even so, collaborative efforts often fail because they attempt to navigate complexity with traditional strategic plans, created by hierarchies that ignore the way people naturally connect. By embracing a living-systems approach to organizing, impact networks bring people together to build relationships across boundaries; leverage the existing work, skills, and motivations of the group; and make progress amid unpredictable and ever-changing conditions. As a powerful and flexible organizing system that can span regions, organizations, and silos of all kinds, impact networks underlie some of the most impressive and large-scale efforts to create change across the globe. David Ehrlichman draws on his experience as a network builder; interviews with dozens of network leaders; and insights from the fields of network science, community building, and systems thinking to provide a clear process for creating and developing impact networks. Given the increasing complexity of our society and the issues we face, our ability to form, grow, and work through networks has never been more essential.
The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.
"This book focuses on the latest innovations in the process of manufacturing in engineering"--Provided by publisher.
Complex systems are usually difficult to design and control. There are several particular methods for coping with complexity, but there is no general approach to build complex systems. In this book I propose a methodology to aid engineers in the design and control of complex systems. This is based on the description of systems as self-organizing. Starting from the agent metaphor, the methodology proposes a conceptual framework and a series of steps to follow to find proper mechanisms that will promote elements to find solutions by actively interacting among themselves.
This book constitutes the thoroughly refereed post-conference proceedings of the 7th IFIP TC 6 International Workshop on Self-Organizing Systems, IWSOS 2013, held in Palma de Mallorca, Spain, in May 2013. The 11 revised full papers and 9 short papers presented were carefully selected from 35 paper submissions. The papers are organized in following topics: design and analysis of self-organizing and self-managing systems, inspiring models of self-organization in nature and society, structure, characteristics and dynamics of self-organizing networks, self-organization in techno-social systems, self-organized social computation and self-organized communication systems.
This book is a spin-off of a by-invitation-only workshop on self-* properties in complex systems held in summer 2004 in Bertinoro, Italy. The workshop aimed to identify the conceptual and practical foundations for modeling, analyzing, and achieving self-* properties in distributed and networked systems. Based on the discussions at the workshop, papers were solicited from workshop participants and invited from leading researchers in the field. Besides presenting sound research results, the papers also present visionary statements, thought-provoking ideas, and exploratory results. The 27 carefully reviewed revised full papers, presented together with a motivating introduction and overview, are organized in topical sections on self-organization, self-awareness, self-awareness versus self-organization, supporting self-properties, and peer-to-peer algorithms.
Covering the key functional areas of LTE Self-Organising Networks (SON), this book introduces the topic at an advanced level before examining the state-of-the-art concepts. The required background on LTE network scenarios, technologies and general SON concepts is first given to allow readers with basic knowledge of mobile networks to understand the detailed discussion of key SON functional areas (self-configuration, -optimisation, -healing). Later, the book provides details and references for advanced readers familiar with LTE and SON, including the latest status of 3GPP standardisation. Based on the defined next generation mobile networks (NGMN) and 3GPP SON use cases, the book elaborates to give the full picture of a SON-enabled system including its enabling technologies, architecture and operation. ”Heterogeneous networks” including different cell hierarchy levels and multiple radio access technologies as a new driver for SON are also discussed. Introduces the functional areas of LTE SON (self-optimisation, -configuration and –healing) and its standardisation, also giving NGMN and 3GPP use cases Explains the drivers, requirements, challenges, enabling technologies and architectures for a SON-enabled system Covers multi-technology (2G/3G) aspects as well as core network and end-to-end operational aspects Written by experts who have been contributing to the development and standardisation of the LTE self-organising networks concept since its inception Examines the impact of new network architectures (“Heterogeneous Networks”) to network operation, for example multiple cell layers and radio access technologies
Self-Organization in Sensor and Actor Networks explores self-organization mechanisms and methodologies concerning the efficient coordination between intercommunicating autonomous systems.Self-organization is often referred to as the multitude of algorithms and methods that organise the global behaviour of a system based on inter-system communication. Studies of self-organization in natural systems first took off in the 1960s. In technology, such approaches have become a hot research topic over the last 4-5 years with emphasis upon management and control in communication networks, and especially in resource-constrained sensor and actor networks. In the area of ad hoc networks new solutions have been discovered that imitate the properties of self-organization. Some algorithms for on-demand communication and coordination, including data-centric networking, are well-known examples. Key features include: Detailed treatment of self-organization, mobile sensor and actor networks, coordination between autonomous systems, and bio-inspired networking. Overview of the basic methodologies for self-organization, a comparison to central and hierarchical control, and classification of algorithms and techniques in sensor and actor networks. Explanation of medium access control, ad hoc routing, data-centric networking, synchronization, and task allocation issues. Introduction to swarm intelligence, artificial immune system, molecular information exchange. Numerous examples and application scenarios to illustrate the theory. Self-Organization in Sensor and Actor Networks will prove essential reading for students of computer science and related fields; researchers working in the area of massively distributed systems, sensor networks, self-organization, and bio-inspired networking will also find this reference useful.