Download Free Self Organised Book in PDF and EPUB Free Download. You can read online Self Organised and write the review.

"Exploring one of the most influential methods of contemporary cultural production, Self-Organised takes a broad view on the matter. Artists, curators and critics discuss empirical and theoretical approaches from Europe, Africa and South and North America to how self-organisation today oscillates between the self and the group, self-imposed bureaucratisation and flexibilism, aestheticisation and activism. The contributors identify now as a crucial moment to propose ways forward for parallel initiatives and institutions alike: from de-organisation and waiting, to rupture and coexistence of aesthetics and politics. However, what they all seem to share is a refreshing search for critical platforms of citizenship, harnessing self-determination in the wake of neo-liberal mainstreaming and right-wing populism alike." --> z ov.
Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.
An overview of results and methods, written for graduates and researchers in physics, mathematics, biology, sociology, finance, medicine and engineering.
Self-organized criticality, the spontaneous development of systems to a critical state, is the first general theory of complex systems with a firm mathematical basis. This theory describes how many seemingly desperate aspects of the world, from stock market crashes to mass extinctions, avalanches to solar flares, all share a set of simple, easily described properties. "...a'must read'...Bak writes with such ease and lucidity, and his ideas are so intriguing...essential reading for those interested in complex systems...it will reward a sufficiently skeptical reader." -NATURE "...presents the theory (self-organized criticality) in a form easily absorbed by the non-mathematically inclined reader." -BOSTON BOOK REVIEW "I picture Bak as a kind of scientific musketeer; flamboyant, touchy, full of swagger and ready to join every fray... His book is written with panache. The style is brisk, the content stimulating. I recommend it as a bracing experience." -NEW SCIENTIST
Self-Organised Schools: Educational Leadership and Innovative Learning Environments describes the results of the research we carried out at fourteen Italian schools that highlight how there is a positive correlation between the capabilities of school self-organization and the innovativeness of learning environments: in other words, the more self-organized schools are, the more innovative learning environments are. The results of this work are part of the strand of research of bottom-up emergency and self-organization, an extremely fruitful trend as shown by Sugata Mitra, the founder of the Self-Organized Learning Environments, according to whom, education is a self-organized system where learning is an emerging phenomenon. This book gives new insights on self-organization studies, and most of all, to the idea that change - organizational and educational innovation - sparks from the bottom. This book is aimed specifically at school principals of all levels, scholastic reformers, educational scholars, organisation and management consultants who want to innovate learning and management of learning. These actors will benefit drawing useful examples from more than thirty different learning environments worldwide, fourteen examples of schools that self-organize, two frameworks - and two ready-to-use questionnaires - measuring the innovativeness of a learning environment, and the capability of a school to self-organize. Self-organization is the most fascinating future of innovative principals
Learning enjoyably ...is a treasure waiting to be discovered. We are the way we use our brains. How do we get a grip on the unconscious in a joyful way? Self-organisation is the training method of peak athletes. The cause of injuries is the lack of self-organisation. Anyone who has the right vibration has the power. Which professional group has the highest life expectancy? Conductors A book with returns: training for the best managers, doctors, entrepreneurs, construction workers, employees and students. Everyone can benefit from its far-ranging and practical insights.
This book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines.
Self-organized criticality (SOC) is based upon the idea that complex behavior can develop spontaneously in certain multi-body systems whose dynamics vary abruptly. This book is a clear and concise introduction to the field of self-organized criticality, and contains an overview of the main research results. The author begins with an examination of what is meant by SOC, and the systems in which it can occur. He then presents and analyzes computer models to describe a number of systems, and he explains the different mathematical formalisms developed to understand SOC. The final chapter assesses the impact of this field of study, and highlights some key areas of new research. The author assumes no previous knowledge of the field, and the book contains several exercises. It will be ideal as a textbook for graduate students taking physics, engineering, or mathematical biology courses in nonlinear science or complexity.
The paradigm of self-organisation is fundamental to theories of collective action in economic science and democratic governance in political science. Self-organisation in these social systems critically depends on voluntary compliance with conventional rules: that is, rules which are made up, mutually agreed, and modifiable 'on the fly'. How, then, can we use the self-organisation observed in such social systems as an inspiration for decentralised computer systems, which can face similar problems of coordination, cooperation and collaboration between autonomous peers?Self-Organising Multi-Agent Systems presents an innovative and systematic approach to transforming theories of economics and politics (and elements of philosophy, psychology, and jurisprudence) into an executable logical specification of conventional rules. It shows how sets of such rules, called institutions, provide an algorithmic basis for designing and implementing cyber-physical systems, enabling intelligent software processes (called agents) to manage themselves in the face of competition for scarce resources. It also provides a basis for implementing socio-technical systems with interacting human and computational intelligences in a way that is sustainable, fair and legitimate.This interdisciplinary book is essential reading for anyone interested in the 'planned emergence' of global properties, commonly-shared values or successful collective action, especially as a product of social construction, knowledge management and political arrangements. For those studying both computer science and social sciences, this book offers a radically new gateway to a transformative understanding of complex system development and social system modelling.Understanding how a computational representation of qualitative values like justice and democracy can lead to stability and legitimacy of socio-technical systems is among the most pressing software engineering challenges of modern times. This book can be read as an invitation to make the Digital Society better.Related Link(s)
The synchronized flashing of fireflies at night. The spiraling patterns of an aggregating slime mold. The anastomosing network of army-ant trails. The coordinated movements of a school of fish. Researchers are finding in such patterns--phenomena that have fascinated naturalists for centuries--a fertile new approach to understanding biological systems: the study of self-organization. This book, a primer on self-organization in biological systems for students and other enthusiasts, introduces readers to the basic concepts and tools for studying self-organization and then examines numerous examples of self-organization in the natural world. Self-organization refers to diverse pattern formation processes in the physical and biological world, from sand grains assembling into rippled dunes to cells combining to create highly structured tissues to individual insects working to create sophisticated societies. What these diverse systems hold in common is the proximate means by which they acquire order and structure. In self-organizing systems, pattern at the global level emerges solely from interactions among lower-level components. Remarkably, even very complex structures result from the iteration of surprisingly simple behaviors performed by individuals relying on only local information. This striking conclusion suggests important lines of inquiry: To what degree is environmental rather than individual complexity responsible for group complexity? To what extent have widely differing organisms adopted similar, convergent strategies of pattern formation? How, specifically, has natural selection determined the rules governing interactions within biological systems? Broad in scope, thorough yet accessible, this book is a self-contained introduction to self-organization and complexity in biology--a field of study at the forefront of life sciences research.