Download Free Self Diffusion In Electrolyte Solutions Book in PDF and EPUB Free Download. You can read online Self Diffusion In Electrolyte Solutions and write the review.

This compilation - the first of its kind - fills a real gap in the field of electrolyte data. Virtually all self-diffusion data in electrolyte solutions as reported in the literature have been examined and the book contains over 400 tables covering diffusion in binary and ternary aqueous solutions, in mixed solvents, and of non-electrolytes in various solvents. An important feature of the compilation is that all data have been critically examined and their accuracy assessed. Other features are an introductory chapter in which the methods of measurement are reviewed; appendices containing tables of the limiting self-diffusion coefficients of ions; and a list of references to data which have been omitted but where information about the diffusing system is given. This is the only complete compilation of self-diffusion data in electrolyte solutions. It will appeal to electrochemists in general, particularly now that recent developments in the theory of transport processes require these data. It will also have a special appeal to electroanalytical chemists in that the ionic self-diffusion coefficient is an important quantity for the interpretation of electrode reactions. In addition, the book will interest geochemists and environmental chemists because the migration of radioactive ions from nuclear waste in certain aqueous media will be governed by the tracer-diffusion coefficient.
The aim and purpose of this book is a survey of our actual basic knowledge of electrolyte solutions. It is meant for chemical engineers looking for an introduction to this field of increasing interest for various technologies, and for scientists wishing to have access to the broad field of modern electrolyte chemistry.
Classic text deals primarily with measurement, interpretation of conductance, chemical potential, and diffusion in electrolyte solutions. Detailed theoretical interpretations, plus extensive tables of thermodynamic and transport properties. 1970 edition.
An Introduction to Aqueous Electrolyte Solutions is a comprehensive coverage of the subject including the development of key concepts and theory that focus on the physical rather than the mathematical aspects. Important links are made between the study of electrolyte solutions and other branches of chemistry, biology, and biochemistry, making it a useful cross-reference tool for students studying this important area of electrochemistry. Carefully developed throughout, each chapter includes intended learning outcomes and worked problems and examples to encourage student understanding of this multidisciplinary subject. * a comprehensive introduction to aqueous electrolyte solutions including the development of key concepts and theories * emphasises the connection between observable macroscopic experimental properties and interpretations made at the molecular level * key developments in concepts and theory explained in a descriptive manner to encourage student understanding * includes worked problems and examples throughout An invaluable text for students taking courses in chemistry and chemical engineering, this book will also be useful for biology, biochemistry and biophysics students required to study electrochemistry.
Prior to the 9th International Conference on Reactivity Solids in Krakow, Poland a group of about 25 international scientists held a special conference entitled "Transport in Nonstoichiometric Compounds" in late Aug. 1980 in Mogilany, Poland (near Krakow). This conference was well received in view of the interaction between the participants, as well as the resulting publication of the proceedings (Elsevier Scientific Publishing Company, 1982, edited by J. Nowotny). At this first conference the participants decided that it would be desirable to organize similar conferences at about two year intervals. Thus, a second meeting was held in late June, early July at Alenya, Pyrenees Orientales, France. This conference had a larger number of participants, about 50, but still managed to promote excellent interaction between all the participants. These proceedings, with editors G. Petot-Ervas, Hj. Matzke and C. Monty, have also been published by Elsevier as a special edition of the journal, Solid State lonics, Vol. 12 (1984). In view of the success of the initial two conferences, a third meeting was organized and held at The Pennsylvania State University, University Park, PA., 16802, U.S.A. from 11 June 84 to 15 June 84. The proceedings of this conference are presented in the following text.
The presence of freely moving charges gives peculiar properties to electrolyte solutions, such as electric conductance, charge transfer, and junction potentials in electrochemical systems. These charges play a dominant role in transport processes, by contrast with classical equilibrium thermodynamics which considers the electrically neutral electrolyte compounds. The present status of transport theory does not permit a first prin ciples analys1s of all transport phenomena with a detailed model of the relevant interactions. Host of the models are still unsufficient for real systems of reasonable complexity. The Liouville equation may be adapted with some Brownian approximations to problems of interact ing solute particles in a continuum (solvent>; however, keeping the Liouville level beyond the limiting laws is an unsolvable task. Some progress was made at the Pokker-Planck level; however, despite a promising start, this theory in its actual form is still unsatis factory for complex systems involving many ions and chemical reac tions. A better approach is provided by the so-called Smoluchowski level in which average velocities are used, but there the hydrodyna mic interactions produce some difficulties. The chemist or chemical engineer, or anyone working with complex electrolyte solutions in applied research wants a general representa tion of the transport phenomena which does not reduce the natural complexity of the multicomponent systems. Reduction of the natural complexity generally is connected with substantial changes of the systems.
First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.
Electrolytes and salt solutions are ubiquitous in chemical industry, biology and nature. This unique compendium introduces the elements of the solution properties of ionic mixtures. In addition, it also serves as a bridge to the modern researches into the molecular aspects of uniform and non-uniform charged systems. Notable subjects include the Debye-Hückel limit, Pitzer's formulation, Setchenov salting-out, and McMillan-Mayer scale. Two new chapters on industrial applications — natural gas treating, and absorption refrigeration, are added to make the book current and relevant.This textbook is eminently suitable for undergraduate and graduate students. For practicing engineers without a background in salt solutions, this introductory volume can also be used as a self-study.
The chapters making up this volume had originally been planned to form part of a single volume covering solid hydrates and aqueous solutions of simple molecules and ions. However, during the preparation of the manu scripts it became apparent that such a volume would turn out to be very unwieldy and I reluctantly decided to recommend the publication of sepa rate volumes. The most sensible way of dividing the subject matter seemed to lie in the separation of simple ionic solutions. The emphasis in the present volume is placed on ion-solvent effects, since a number of excellent texts cover the more general aspects of electrolyte solutions, based on the classical theories of Debye, Huckel, On sager, and Fuoss. It is interesting to speculate as to when a theory becomes "classical." Perhaps this occurs when it has become well known, well liked, and much adapted. The above-mentioned theories of ionic equilibria and transport certainly fulfill these criteria. There comes a time when the refinements and modifications can no longer be related to physical significance and can no longer hide the fact that certain fundamental assumptions made in the development of the theory are untenable, especially in the light of information obtained from the application of sophisticated molecular and thermodynamic techniques.
An updated guide to the growing field of nanofiltration including fundamental principles, important industrial applications as well as novel materials With contributions from an international panel of experts, the revised second edition of Nanofiltration contains a comprehensive overview of this growing field. The book covers the basic principles of nanofiltration including the design and characterizations of nanofiltration membranes. The expert contributors highlight the broad ranges of industrial applications including water treatment, food, pulp and paper, and textiles. The book explores photocatalytic nanofiltration reactors, organic solvent nanofiltration, as well as nanofiltration in metal and acid recovery. In addition, information on the most recent developments in the field are examined including nanofiltration retentate treatment and renewable energy-powered nanofiltration. The authors also consider the future of nanofiltration materials such as carbon- as well as polymer-based materials. This important book: Explores the fast growing field of the membrane process of nanofiltration Examines the rapidly expanding industrial sector's use of membranes for water purification Covers the most important industrial applications with a strong focus on water treatment Contains a section on new membrane materials, including carbon-based and polymer-based materials, as well as information on artificial ion and water channels as biomimetic membranes Written for scientists and engineers in the fields of chemistry, environment, food and materials, the second edition of Nanofiltration provides a comprehensive overview of the field, outlines the principles of the technology, explores the industrial applications, and discusses new materials.