Download Free Self Assembly Of Macromolecules Book in PDF and EPUB Free Download. You can read online Self Assembly Of Macromolecules and write the review.

Self-assembly monolayer (SAM) structures of lipids and macromolecules have been found to play an important role in many industrial and biological phenomena. This book describes two procedures, namely the STM and AFM, that are used to study SAMs at solid surfaces. K.S. Birdi examines the SAMs at both liquid and solid surfaces by using the Langmuir monolayer method. This book is intended for researchers, academics and professionals.
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.
The term ‘miktoarm polymers’ refers to asymmetric branched macromolecules, a relatively new entry to the macromolecular field. Recent advances in their synthesis and intriguing supramolecular chemistry in a desired medium has seen a fast expansion of their applications. The composition of miktoarm polymers can be tailored and even pre-defined to allow a desired combination of functions, meaning polymer chemists can have complete control of the overall architecture of these macromolecules. By carefully selecting the composition, they can create supramolecular structures with intriguing properties, particularly for applications in biology. Miktoarm Star Polymers features chapters from experts actively working in this field, and provides the reader with a unique introduction to the fundamental principles of this exciting macromolecular system. Topics covered include the design, synthesis, characterization, self-assembly and applications of miktoarm polymers. The book is an excellent overview and up to date guide to those working in research in polymer chemistry, materials science, and polymers for medical applications.
This book describes techniques of synthesis and self-assembly of macromolecules for developing new materials and improving functionality of existing ones. Because self-assembly emulates how nature creates complex systems, they likely have the best chance at succeeding in real-world biomedical applications. • Employs synthetic chemistry, physical chemistry, and materials science principles and techniques • Emphasizes self-assembly in solutions (particularly, aqueous solutions) and at solid-liquid interfaces • Describes polymer assembly driven by multitude interactions, including solvophobic, electrostatic, and obligatory co-assembly • Illustrates assembly of bio-hybrid macromolecules and applications in biomedical engineering
With contributions be numerous experts.
The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.
The field of CMA (complex macromolecular architecture) stands at the cutting edge of materials science, and has been a locus of intense research activity in recent years. This book gives an extensive description of the synthesis, characterization, and self-assembly of recently-developed advanced architectural materials with a number of potential applications. The architectural polymers, including bio-conjugated hybrid polymers with poly(amino acid)s and gluco-polymers, star-branched and dendrimer-like hyperbranched polymers, cyclic polymers, dendrigraft polymers, rod-coil and helix-coil block copolymers, are introduced chapter by chapter in the book. In particular, the book also emphasizes the topic of synthetic breakthroughs by living/controlled polymerization since 2000. Furthermore, renowned authors contribute on special topics such as helical polyisocyanates, metallopolymers, stereospecific polymers, hydrogen-bonded supramolecular polymers, conjugated polymers, and polyrotaxanes, which have attracted considerable interest as novel polymer materials with potential future applications. In addition, recent advances in reactive blending achieved with well-defined end-functionalized polymers are discussed from an industrial point of view. Topics on polymer-based nanotechnologies, including self-assembled architectures and suprastructures, nano-structured materials and devices, nanofabrication, surface nanostructures, and their AFM imaging analysis of hetero-phased polymers are also included. Provides comprehensive coverage of recently developed advanced architectural materials Covers hot new areas such as: click chemistry; chain walking; polyhomologation; ADMET Edited by highly regarded scientists in the field Contains contributions from 26 leading experts from Europe, North America, and Asia Researchers in academia and industry specializing in polymer chemistry will find this book to be an ideal survey of the most recent advances in the area. The book is also suitable as supplementary reading for students enrolled in Polymer Synthetic Chemistry, Polymer Synthesis, Polymer Design, Advanced Polymer Chemistry, Soft Matter Science, and Materials Science courses. Color versions of selected figures can be found at www.wiley.com/go/hadjichristidis
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. - Explores both theoretical and practical aspects of self-assembly in biomaterials - Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials - Examines the use of dynamic self-assembling biomaterials
Named after the two-faced roman god, Janus particles have gained much attention due to their potential in a variety of applications, including drug delivery. This is the first book devoted to Janus particles and covers their methods of synthesis, how these particles self-assemble, and their possible uses. By following the line of synthesis, self-assembly and applications, the book not only covers the fundamental and applied aspects, but it goes beyond a simple summary and offers a logistic way of selecting the proper synthetic route for Janus particles for certain applications. Written by pioneering experts in the field, the book introduces the Janus concept to those new to the topic and highlights the most recent research progress on the topic for those active in the field and catalyze new ideas.