Download Free Self Adaptive Systems For Machine Intelligence Book in PDF and EPUB Free Download. You can read online Self Adaptive Systems For Machine Intelligence and write the review.

This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide applications from military security systems to civilian daily life. In this book, different application problems, including pattern recognition, classification, image recovery, and sequence learning, will be presented to show the capability of the proposed systems in learning, memory, and prediction. Therefore, this book will also provide potential new solutions to many real-world applications.
A concise and practical introduction to the foundations and engineering principles of self-adaptation Though it has recently gained significant momentum, the topic of self-adaptation remains largely under-addressed in academic and technical literature. This book changes that. Using a systematic and holistic approach, An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective provides readers with an accessible set of basic principles, engineering foundations, and applications of self-adaptation in software-intensive systems. It places self-adaptation in the context of techniques like uncertainty management, feedback control, online reasoning, and machine learning while acknowledging the growing consensus in the software engineering community that self-adaptation will be a crucial enabling feature in tackling the challenges of new, emerging, and future systems. The author combines cutting-edge technical research with basic principles and real-world insights to create a practical and strategically effective guide to self-adaptation. He includes features such as: An analysis of the foundational engineering principles and applications of self-adaptation in different domains, including the Internet-of-Things, cloud computing, and cyber-physical systems End-of-chapter exercises at four different levels of complexity and difficulty An accompanying author-hosted website with slides, selected exercises and solutions, models, and code Perfect for researchers, students, teachers, industry leaders, and practitioners in fields that directly or peripherally involve software engineering, as well as those in academia involved in a class on self-adaptivity, this book belongs on the shelves of anyone with an interest in the future of software and its engineering.
The carefully reviewed papers in this state-of-the-art survey describe a wide range of approaches coming from different strands of software engineering, and look forward to future challenges facing this ever-resurgent and exacting field of research.
The book intends to cover various problematic aspects of emerging smart computing and self-adapting technologies comprising of machine learning, artificial intelligence, deep learning, robotics, cloud computing, fog computing, data mining algorithms, including emerging intelligent and smart applications related to these research areas. Further coverage includes implementation of self-adaptation architecture for smart devices, self-adaptive models for smart cities and self-driven cars, decentralized self-adaptive computing at the edge networks, energy-aware AI-based systems, M2M networks, sensors, data analytics, algorithms and tools for engineering self-adaptive systems, and so forth. Acts as guide to Self-healing and Self-adaptation based fully automatic future technologies Discusses about Smart Computational abilities and self-adaptive systems Illustrates tools and techniques for data management and explains the need to apply, and data integration for improving efficiency of big data Exclusive chapter on the future of self-stabilizing and self-adaptive systems of systems Covers fields such as automation, robotics, medical sciences, biomedical and agricultural sciences, healthcare and so forth This book is aimed researchers and graduate students in machine learning, information technology, and artificial intelligence.
This book will advance the understanding and application of self-adaptive intelligent systems; therefore it will potentially benefit the long-term goal of replicating certain levels of brain-like intelligence in complex and networked engineering systems. It will provide new approaches for adaptive systems within uncertain environments. This will provide an opportunity to evaluate the strengths and weaknesses of the current state-of-the-art of knowledge, give rise to new research directions, and educate future professionals in this domain. Self-adaptive intelligent systems have wide applications from military security systems to civilian daily life. In this book, different application problems, including pattern recognition, classification, image recovery, and sequence learning, will be presented to show the capability of the proposed systems in learning, memory, and prediction. Therefore, this book will also provide potential new solutions to many real-world applications.
A major challenge for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, energy-efficient, customizable, and configurable when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to achieving such properties is to equip the software system with self-adaptation capabilities. Despite recent advances in this area, one key aspect that remains to be tackled in depth is the provision of assurances. Originating from a Dagstuhl seminar held in December 2013, this book constitutes the third volume in the series “Software Engineering for Self-Adaptive Systems”, and looks specifically into the provision of assurances. Opening with an overview chapter on Research Challenges, the book presents 13 further chapters written and carefully reviewed by internationally leading researchers in the field. The book is divided into topical sections on research challenges, evaluation, integration and coordination, and reference architectures and platforms.
Managing Trade-Offs in Adaptable Software Architectures explores the latest research on adapting large complex systems to changing requirements. To be able to adapt a system, engineers must evaluate different quality attributes, including trade-offs to balance functional and quality requirements to maintain a well-functioning system throughout the lifetime of the system. This comprehensive resource brings together research focusing on how to manage trade-offs and architect adaptive systems in different business contexts. It presents state-of-the-art techniques, methodologies, tools, best practices, and guidelines for developing adaptive systems, and offers guidance for future software engineering research and practice. Each contributed chapter considers the practical application of the topic through case studies, experiments, empirical validation, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to, how to architect a system for adaptability, software architecture for self-adaptive systems, understanding and balancing the trade-offs involved, architectural patterns for self-adaptive systems, how quality attributes are exhibited by the architecture of the system, how to connect the quality of a software architecture to system architecture or other system considerations, and more. - Explains software architectural processes and metrics supporting highly adaptive and complex engineering - Covers validation, verification, security, and quality assurance in system design - Discusses domain-specific software engineering issues for cloud-based, mobile, context-sensitive, cyber-physical, ultra-large-scale/internet-scale systems, mash-up, and autonomic systems - Includes practical case studies of complex, adaptive, and context-critical systems
Introduction to Evolvable Hardware: A Practical Guide for Designing Self-Adaptive Systems provides a fundamental introduction for engineers, designers, and managers involved in the development of adaptive, high reliability systems. It also introduces the concepts of evolvable hardware (EHW) to new researchers in a structured way. With this practical book, you’ll be able to quickly apply the techniques presented to existing design problems.
This book provides formal and informal definitions and taxonomies for self-aware computing systems, and explains how self-aware computing relates to many existing subfields of computer science, especially software engineering. It describes architectures and algorithms for self-aware systems as well as the benefits and pitfalls of self-awareness, and reviews much of the latest relevant research across a wide array of disciplines, including open research challenges. The chapters of this book are organized into five parts: Introduction, System Architectures, Methods and Algorithms, Applications and Case Studies, and Outlook. Part I offers an introduction that defines self-aware computing systems from multiple perspectives, and establishes a formal definition, a taxonomy and a set of reference scenarios that help to unify the remaining chapters. Next, Part II explores architectures for self-aware computing systems, such as generic concepts and notations that allow a wide range of self-aware system architectures to be described and compared with both isolated and interacting systems. It also reviews the current state of reference architectures, architectural frameworks, and languages for self-aware systems. Part III focuses on methods and algorithms for self-aware computing systems by addressing issues pertaining to system design, like modeling, synthesis and verification. It also examines topics such as adaptation, benchmarks and metrics. Part IV then presents applications and case studies in various domains including cloud computing, data centers, cyber-physical systems, and the degree to which self-aware computing approaches have been adopted within those domains. Lastly, Part V surveys open challenges and future research directions for self-aware computing systems. It can be used as a handbook for professionals and researchers working in areas related to self-aware computing, and can also serve as an advanced textbook for lecturers and postgraduate students studying subjects like advanced software engineering, autonomic computing, self-adaptive systems, and data-center resource management. Each chapter is largely self-contained, and offers plenty of references for anyone wishing to pursue the topic more deeply.
The increasing complexity of systems and the growing uncertainty in their operational environments have created a critical need to develop systems able to improve their operation, adapt to change, and recover from failures autonomously. This situation has led to recent advances in self-adaptive systems able to reconfigure their structure and modify their behavior at run-time to adapt to environmental changes. Despite these advances, one key aspect of self-adaptive systems that remains to be tackled in depth is "assurances": the provision of evidence that the system satisfies its stated functional and non-functional requirements during its operation in the presence of self-adaptation. This book is one of the outcomes of the ESEC/FSE 2011 Workshop on Assurances for Self-Adaptive Systems (ASAS), held in Szeged, Hungary, in September 2011. It contains extended versions of some of the papers presented during the workshop, as well as invited papers from recognized experts. The 12 refereed papers were thoroughly reviewed and selected. The book consists of four parts: formal verification, models and middleware, failure prediction, and assurance techniques.