Download Free Self Adaptive Software Book in PDF and EPUB Free Download. You can read online Self Adaptive Software and write the review.

A concise and practical introduction to the foundations and engineering principles of self-adaptation Though it has recently gained significant momentum, the topic of self-adaptation remains largely under-addressed in academic and technical literature. This book changes that. Using a systematic and holistic approach, An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective provides readers with an accessible set of basic principles, engineering foundations, and applications of self-adaptation in software-intensive systems. It places self-adaptation in the context of techniques like uncertainty management, feedback control, online reasoning, and machine learning while acknowledging the growing consensus in the software engineering community that self-adaptation will be a crucial enabling feature in tackling the challenges of new, emerging, and future systems. The author combines cutting-edge technical research with basic principles and real-world insights to create a practical and strategically effective guide to self-adaptation. He includes features such as: An analysis of the foundational engineering principles and applications of self-adaptation in different domains, including the Internet-of-Things, cloud computing, and cyber-physical systems End-of-chapter exercises at four different levels of complexity and difficulty An accompanying author-hosted website with slides, selected exercises and solutions, models, and code Perfect for researchers, students, teachers, industry leaders, and practitioners in fields that directly or peripherally involve software engineering, as well as those in academia involved in a class on self-adaptivity, this book belongs on the shelves of anyone with an interest in the future of software and its engineering.
The carefully reviewed papers in this state-of-the-art survey describe a wide range of approaches coming from different strands of software engineering, and look forward to future challenges facing this ever-resurgent and exacting field of research.
Managing Trade-Offs in Adaptable Software Architectures explores the latest research on adapting large complex systems to changing requirements. To be able to adapt a system, engineers must evaluate different quality attributes, including trade-offs to balance functional and quality requirements to maintain a well-functioning system throughout the lifetime of the system. This comprehensive resource brings together research focusing on how to manage trade-offs and architect adaptive systems in different business contexts. It presents state-of-the-art techniques, methodologies, tools, best practices, and guidelines for developing adaptive systems, and offers guidance for future software engineering research and practice. Each contributed chapter considers the practical application of the topic through case studies, experiments, empirical validation, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to, how to architect a system for adaptability, software architecture for self-adaptive systems, understanding and balancing the trade-offs involved, architectural patterns for self-adaptive systems, how quality attributes are exhibited by the architecture of the system, how to connect the quality of a software architecture to system architecture or other system considerations, and more. - Explains software architectural processes and metrics supporting highly adaptive and complex engineering - Covers validation, verification, security, and quality assurance in system design - Discusses domain-specific software engineering issues for cloud-based, mobile, context-sensitive, cyber-physical, ultra-large-scale/internet-scale systems, mash-up, and autonomic systems - Includes practical case studies of complex, adaptive, and context-critical systems
A major challenge for modern software systems is to become more cost-effective, while being versatile, flexible, resilient, energy-efficient, customizable, and configurable when reacting to run-time changes that may occur within the system itself, its environment or requirements. One of the most promising approaches to achieving such properties is to equip the software system with self-adaptation capabilities. Despite recent advances in this area, one key aspect that remains to be tackled in depth is the provision of assurances. Originating from a Dagstuhl seminar held in December 2013, this book constitutes the third volume in the series “Software Engineering for Self-Adaptive Systems”, and looks specifically into the provision of assurances. Opening with an overview chapter on Research Challenges, the book presents 13 further chapters written and carefully reviewed by internationally leading researchers in the field. The book is divided into topical sections on research challenges, evaluation, integration and coordination, and reference architectures and platforms.
Economics-driven Software Architecture presents a guide for engineers and architects who need to understand the economic impact of architecture design decisions: the long term and strategic viability, cost-effectiveness, and sustainability of applications and systems. Economics-driven software development can increase quality, productivity, and profitability, but comprehensive knowledge is needed to understand the architectural challenges involved in dealing with the development of large, architecturally challenging systems in an economic way. This book covers how to apply economic considerations during the software architecting activities of a project. Architecture-centric approaches to development and systematic evolution, where managing complexity, cost reduction, risk mitigation, evolvability, strategic planning and long-term value creation are among the major drivers for adopting such approaches. It assists the objective assessment of the lifetime costs and benefits of evolving systems, and the identification of legacy situations, where architecture or a component is indispensable but can no longer be evolved to meet changing needs at economic cost. Such consideration will form the scientific foundation for reasoning about the economics of nonfunctional requirements in the context of architectures and architecting.
The 18 revised full papers presented in this book together with an introductory survey were carefully reviewed and constitute the documentation of the Second International Workshop on Self-adaptive Software, IWSAS 2001, held in Balatonfüred, Hungary in May 2001. Self-adaptive software evaluates its own behavior and changes it when the evaluation indicates that the software does not accomplish what it is intended to do or when better functionality or better performance is possible. The self-adaptive approach in software engineering builds on well known dynamic features familiar to Lisp or Java programmes and aims at improving the robustness of software systems by gradually adding new features of self-adaption or autonomy.
Cognitive networks can be crucial for the evolution of future communication systems; however, current trends have indicated major movement in other relevant fields towards the integration of different techniques for the realization of self-aware and self-adaptive communication systems. Evolution of Cognitive Networks and Self-Adaptive Communication Systems overviews innovative technologies combined for the formation of self-aware, self-adaptive, and self-organizing networks. By aiming to inform the research community and the related industry of solutions for cognitive networks, this book is essential for researchers, instructors, and professionals interested in clarifying the latest trends resulting in a unified realization for cognitive networking and communication systems.
This book constitutes the refereed proceedings of the 23rd International Conference on Advanced Information Systems Engineering, CAiSE 2011, held in London, UK, in June 2011. The 42 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 320 submissions. In addtion the book contains the abstracts of 2 keynote speeches. The contributions are organized in topical sections on requirements; adaptation and evolution; model transformation; conceptual design; domain specific languages; case studies and experiences; mining and matching; business process modelling; validation and quality; and service and management.
This handbook provides a unique and in-depth survey of the current state-of-the-art in software engineering, covering its major topics, the conceptual genealogy of each subfield, and discussing future research directions. Subjects include foundational areas of software engineering (e.g. software processes, requirements engineering, software architecture, software testing, formal methods, software maintenance) as well as emerging areas (e.g., self-adaptive systems, software engineering in the cloud, coordination technology). Each chapter includes an introduction to central concepts and principles, a guided tour of seminal papers and key contributions, and promising future research directions. The authors of the individual chapters are all acknowledged experts in their field and include many who have pioneered the techniques and technologies discussed. Readers will find an authoritative and concise review of each subject, and will also learn how software engineering technologies have evolved and are likely to develop in the years to come. This book will be especially useful for researchers who are new to software engineering, and for practitioners seeking to enhance their skills and knowledge.
The increasing complexity of systems and the growing uncertainty in their operational environments have created a critical need to develop systems able to improve their operation, adapt to change, and recover from failures autonomously. This situation has led to recent advances in self-adaptive systems able to reconfigure their structure and modify their behavior at run-time to adapt to environmental changes. Despite these advances, one key aspect of self-adaptive systems that remains to be tackled in depth is "assurances": the provision of evidence that the system satisfies its stated functional and non-functional requirements during its operation in the presence of self-adaptation. This book is one of the outcomes of the ESEC/FSE 2011 Workshop on Assurances for Self-Adaptive Systems (ASAS), held in Szeged, Hungary, in September 2011. It contains extended versions of some of the papers presented during the workshop, as well as invited papers from recognized experts. The 12 refereed papers were thoroughly reviewed and selected. The book consists of four parts: formal verification, models and middleware, failure prediction, and assurance techniques.