Download Free Selective Glycosylations Book in PDF and EPUB Free Download. You can read online Selective Glycosylations and write the review.

A comprehensive summary of novel approaches to the stereoselective construction of glycosidic linkages, covering modern glycosylation methods and their use and application in natural product synthesis and drug discovery. Clearly divided into five sections, the first describes recent advances in classical methodologies in carbohydrate chemistry, while the second goes on to deal with newer chemistries developed to control selectivity in glycosylation reactions. Section three is devoted to selective glycosylation reactions that rely on the use of catalytic promoters. Section four describes modern approaches for controlling regioselectivity in carbohydrate synthesis. The final section focuses on new developments in the construction of "unusual" sugars and is rounded off by a presentation of modern procedures for the construction of glycosylated natural products. By providing the latest advances in glycosylation as well as information on mechanistic aspects of the reaction, this is an invaluable reference for both specialists and beginners in this booming interdisciplinary field that includes carbohydrate chemistry, organic synthesis, catalysis, and biochemistry.
A comprehensive summary of novel approaches to the stereoselective construction of glycosidic linkages, covering modern glycosylation methods and their use and application in natural product synthesis and drug discovery. Clearly divided into five sections, the first describes recent advances in classical methodologies in carbohydrate chemistry, while the second goes on to deal with newer chemistries developed to control selectivity in glycosylation reactions. Section three is devoted to selective glycosylation reactions that rely on the use of catalytic promoters. Section four describes modern approaches for controlling regioselectivity in carbohydrate synthesis. The final section focuses on new developments in the construction of "unusual" sugars and is rounded off by a presentation of modern procedures for the construction of glycosylated natural products. By providing the latest advances in glycosylation as well as information on mechanistic aspects of the reaction, this is an invaluable reference for both specialists and beginners in this booming interdisciplinary field that includes carbohydrate chemistry, organic synthesis, catalysis, and biochemistry.
Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
This book summarizes recent advances in antibody glycosylation research. Covering major topics relevant for immunoglobulin glycosylation - analytical methods, biosynthesis and regulation, modulation of effector functions - it provides new perspectives for research and development in the field of therapeutic antibodies, biomarkers, vaccinations, and immunotherapy. Glycans attached to both variable and constant regions of antibodies are known to affect the antibody conformation, stability, and effector functions. Although it focuses on immunoglobulin G (IgG), the most explored antibody in this context, and unravels the natural phenomena resulting from the mixture of IgG glycovariants present in the human body, the book also discusses other classes of human immunoglobulins, as well as immunoglobulins produced in other species and production systems. Further, it reviews the glycoanalytical methods applied to antibodies and addresses a range of less commonly explored topics, such as automatization and bioinformatics aspects of high-throughput antibody glycosylation analysis. Lastly, the book highlights application areas ranging from the ones already benefitting from antibody glycoengineering (such as monoclonal antibody production), to those still in the research stages (such as exploration of antibody glycosylation as a clinical or biological age biomarker), and the potential use of antibody glycosylation in the optimization of vaccine production and immunization protocols. Summarizing the current knowledge on the broad topic of antibody glycosylation and its therapeutic and biomarker potential, this book will appeal to a wide biomedical readership in academia and industry alike. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
As a reflection of the quantum leap that has been made in the study of glycostructures, the first edition of this book has been completely revised and updated. The editors give up-to-date information on glycostructures, their chemistry and chemical biology in the form of a completely comprehensive survey. Glycostructures play highly diverse and crucial roles in a myriad of organisms and important systems in biology, physiology, medicine, bioengineering and technology. Only in recent years have the tools been developed to partly understand the highly complex functions and the chemistry behind them. While many facts remain undiscovered, this MRW has been contributed to by a large number of the world’s leading researchers in the field.
This book contains the best known approaches for preparing the main types of glycosides in a short and comprehensive study. It also includes synthetic pathways of challenging glycosides known as antiviral or antineoplasic drugs, or synthetic substrates used for enzymatic detection including those used as substrates for detection of gene markers in plant biotechnology. Special attention is made on the structural characterization, providing the basic tools for the structural assignment through NMR, X-Ray and mass spectra techniques. Some of the chapters cover strategies for preparation of antiviral and antineoplasic drugs included in a drug design course.
A unique overview of the most important protecting group strategies in carbohydrate chemistry Protecting Groups: Strategies and Applications in Carbohydrate Chemistry provides a detailed account of key strategies and methodologies for the protection of carbohydrates. Divided into two parts, the first focuses on groups that are used best to protect a specific position on a carbohydrate. In the second part, specific carbohydrate residues or compounds are discussed in the context of a specific protecting group strategy used to reach the desired regioisomer. This important book: -Features chapters on protecting groups at the primary and secondary positions of carbohydrates -Describes protecting group strategies towards sialic acid derivatives, glycofuranoses, sulfated glycosaminoglycans, and cyclodextrins -Provides information on automated glycan assembly -Includes a chapter on the industrial scale synthesis of heparin analogs Written by a team of leaders in the field, Protecting Groups: Strategies and Applications in Carbohydrate Chemistry is an indispensable guide for academics and industrial researchers interested in carbohydrate and natural product synthesis, pharmaceutical chemistry, and biochemistry.
Since carbohydrate oligomers are still a challenge in synthetic chemistry, this book on recent developments fulfils a great need. Covering the chemistry necessary to synthesize exact copies of these structures, top authors from all around the world comprehensively deal with synthesis from anomeric halides, from miscellaneous glycosyl donors, and by indirect and special methods, as well as 1-oxygen-and 1-sulfur-substituted derivatives. They demonstrate the best approach for the stereoselective formation of the intermonomeric bond, making this essential reading for every biochemist working in biosynthesis, the exploration of biopathways and vaccines.
"Presents state-of-the-art methods for the synthesis, analysis, and conformational investigation of glycoproteins and glycopeptides. Discusses the history of glycopeptide synthesis, therapeutic applications, and the future of research."