Download Free Selected Topics In Signal Processing Book in PDF and EPUB Free Download. You can read online Selected Topics In Signal Processing and write the review.

This book is a result of author's thirty-three years of experience in teaching and research in signal processing. The book will guide you from a review of continuous-time signals and systems, through the world of digital signal processing, up to some of the most advanced theory and techniques in adaptive systems, time-frequency analysis, and sparse signal processing. It provides simple examples and explanations for each, including the most complex transform, method, algorithm or approach presented in the book. The most sophisticated results in signal processing theory are illustrated on simple numerical examples. The book is written for students learning digital signal processing and for engineers and researchers refreshing their knowledge in this area. The selected topics are intended for advanced courses and for preparing the reader to solve problems in some of the state of art areas in signal processing. The book consists of three parts. After an introductory review part, the basic principles of digital signal processing are presented within Part two of the book. This part starts with Chapter two which deals with basic definitions, transforms, and properties of discrete-time signals. The sampling theorem, providing the essential relation between continuous-time and discrete-time signals, is presented in this chapter as well. Discrete Fourier transform and its applications to signal processing are the topic of the third chapter. Other common discrete transforms, like Cosine, Sine, Walsh-Hadamard, and Haar are also presented in this chapter. The z-transform, as a powerful tool for analysis of discrete-time systems, is the topic of Chapter four. Various methods for transforming a continuous-time system into a corresponding discrete-time system are derived and illustrated in Chapter five. Chapter six is dedicated to the forms of discrete-time system realizations. Basic definitions and properties of random discrete-time signals are given in Chapter six. Systems to process random discrete-time signals are considered in this chapter as well. Chapter six concludes with a short study of quantization effects. The presentation is supported by numerous illustrations and examples. Chapters within Part two are followed by a number of solved and unsolved problems for practice. The theory is explained in a simple way with a necessary mathematical rigor. The book provides simple examples and explanations for each presented transform, method, algorithm or approach. Sophisticated results in signal processing theory are illustrated by simple numerical examples. Part three of the book contains few selected topics in digital signal processing: adaptive discrete-time systems, time-frequency signal analysis, and processing of discrete-time sparse signals. This part could be studied within an advanced course in digital signal processing, following the basic course. Some parts from the selected topics may be included in tailoring a more extensive first course in digital signal processing as well. About the author: Ljubisa Stankovic is a professor at the University of Montenegro, IEEE Fellow for contributions to the Time-Frequency Signal Analysis, a member of the Montenegrin and European Academy of Sciences and Arts. He has been an Associate Editor of several world-leading journals in Signal Processing.
This book developed from a course given by the author to undergraduate and postgraduate students. It takes up Matrix Theory, Antenna Theory, and Probability Theory in detail. The first chapter on matrix theory discusses in reasonable depth the theory of Lie Algebras leading upto Cartan’s Classification Theory. It also discusses some basic elements of Functional Analysis and Operator Theory in infinite dimensional Banach and Hilbert spaces. The second chapter discusses Basic Probability Theory and the topics discussed find applications to Stochastic Filtering Theory for differential equations driven by white Gaussian noise. The third chapter is on Antenna Theory with a focus on Modern Quantum Antenna Theory. The book will be a valuable resource to students and early career researchers in the field of Mathametical Physics.
This book is a collection of specific research problems in signal processing and their solutions. It touches upon most core topics, including active and passive processing, discrete-time and continuous signals, and design of filters and networks for specific applications. This unique collection of design problems and conceptual insights will be useful to graduate students, researchers, and professionals working on signal processing problems. In addition, the book can also be used as a supplementary text for graduate courses in advanced signal processing, and for professional development courses for practicing engineers.
Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and over-sampling ADC. New to this edition: - MATLAB projects dealing with practical applications added throughout the book - New chapter (chapter 13) covering sub-band coding and wavelet transforms, methods that have become popular in the DSP field - New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals - All real-time C programs revised for the TMS320C6713 DSK - Covers DSP principles with emphasis on communications and control applications - Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems - Website with MATLAB programs for simulation and C programs for real-time DSP
In three parts, this book contributes to the advancement of engineering education and that serves as a general reference on digital signal processing. Part I presents the basics of analog and digital signals and systems in the time and frequency domain. It covers the core topics: convolution, transforms, filters, and random signal analysis. It also treats important applications including signal detection in noise, radar range estimation for airborne targets, binary communication systems, channel estimation, banking and financial applications, and audio effects production. Part II considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics.
Being an inter-disciplinary subject, Signal Processing has application in almost all scientific fields. Applied Signal Processing tries to link between the analog and digital signal processing domains. Since the digital signal processing techniques have evolved from its analog counterpart, this book begins by explaining the fundamental concepts in analog signal processing and then progresses towards the digital signal processing. This will help the reader to gain a general overview of the whole subject and establish links between the various fundamental concepts. While the focus of this book is on the fundamentals of signal processing, the understanding of these topics greatly enhances the confident use as well as further development of the design and analysis of digital systems for various engineering and medical applications. Applied Signal Processing also prepares readers to further their knowledge in advanced topics within the field of signal processing.
Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in Array and Radar Processing, Communications Engineering and Machine Learning. Users will find the book to be an invaluable starting point to their research and initiatives. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in both image and video processing and analysis and computer vision. The book provides an invaluable starting point to the area through the insight and understanding that it provides. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.