Download Free Selected Topics In Photonic Crystals And Metamaterials Book in PDF and EPUB Free Download. You can read online Selected Topics In Photonic Crystals And Metamaterials and write the review.

The interest towards photonic crystals and metamaterials and their strategic importance are evident in the steadily growing rate of topical publications. This title addresses that ranges topics, including aspects pertaining to modeling, phenomenologies, experiments, technologies and applications.
The interest towards photonic crystals and metamaterials and their strategic importance are evident in the steadily growing rate of topical publications. This title addresses that ranges topics, including aspects pertaining to modeling, phenomenologies, experiments, technologies and applications.
This E-Book covers the research and the development of a novel generation of photonic devices for sensing applications. The E-Book starts with a brief review of basic photonic crystal (PhC) structure related concepts and describes the numerical and technological tools useful in the design and fabrication of devices based on PhCs. Next, the E-Book provides a selection of crossover topics emerging in the scientific community as breaking through researches, technologies and sciences for the development of novel technological platforms for physical, chemical and biological sensing. The E-Book ends with a description of the main PhC sensors to date by representing many of the exciting sensing applications that utilize photonic crystal structures.
This book discusses bulk solids that derive their mechanical properties not from those of their base materials, but from their designed microstructures. Focusing on the negative mechanical properties, it addresses topics that reveal the counter-intuitive nature of solids, specifically the negativity of properties that are commonly positive, such as negative bulk modulus, negative compressibility, negative hygroexpansion, negative thermal expansion, negative stiffness phase, and negative Poisson’s ratio. These topics are significant not only due to the curiosity they have sparked, but also because of the possibility of designing materials and structures that can behave in ways that are not normally expected in conventional solids, and as such, of materials that can outperform solids and structures made from conventional materials. The book includes illustrations to facilitate learning, and, where appropriate, reference tables. The presentation is didactic, starting with simple cases, followed by increasingly complex ones. It provides a solid foundation for graduate students, and a valuable resource for practicing materials engineers seeking to develop novel materials through the judicious design of microstructures and their corresponding mechanisms.
This book offers a unified presentation of metamaterials building from fundamental nanophotonic principles.
This book provides an overview of the state of the art in optical and chemical nanosensors for industrial, environmental, diagnostic, security, and medical applications. It summarizes the various types and developments in optical and chemical sensor technology and then explains how the integration of optical/chemical sensors and nanomaterials creates new opportunities. The text also reviews optochemical sensors, starting from the basics in optoelectronics and concluding with the principles of operation at the basis of optochemical devices. The authors offer insight into future trends in this growing field and present a range of applications in the fields of medicine, security, and bioterrorism.
This book provides the theoretical background required for modelling photonic crystals and their optical properties, while presenting the large variety of devices where photonic crystals have found application. As such, it aims at building bridges between optics, electromagnetism and solid state physics. This second edition includes the most recent developments of two-dimensional photonic crystal devices, as well as some of the last results reported on metamaterials.
The book focuses on photonic devices and systems for space applications and critically reviews the most promising research advances in the field of photonic technologies, which may have a significant impact on the performance of space systems.Photonics is emerging as a crucial enabling technology having the potential of enhancing many space systems, including the links for on-board data handling, the high-resolution measurement systems, and the processing units. The book discusses this subject with a special emphasis on the new guided-wave devices with high performance, low cost and size.Most of the scientific content of the book is novel and it is devoted to academic and industrial researchers working on the field.
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of dielectric resonators is discussed.
This is a brief introduction to the ideas and phenomena that occur in the nonlinear optics of photonic crystals and metamaterials. These are illustrated within the context of simple models which provide an easy understanding of the physical phenomena that are important in these two rapidly developing areas of nano-photonic technology. An introduction and discussion of some of the basic principles of linear and nonlinear optical nano-systems are given. The focus is on engineered optical systems that have been of recent interest in physics, engineering, and applied mathematics for their opto-electronic applications. These include photonic crystals and meta-materials, and in the following discussions the operating principles of photonic crystals and meta-materials are outlined.