Download Free Selected Papers On Number Theory And Algebraic Geometry Book in PDF and EPUB Free Download. You can read online Selected Papers On Number Theory And Algebraic Geometry and write the review.

This book presents papers that originally appeared in the Japanese journal Sugaku from the Mathematical Society of Japan. The papers explore the relationship between number theory and algebraic geometry.
This book presents papers that originally appeared in the Japanese journal Sugaku. The papers explore the relationship between number theory, algebraic geometry, and differential geometry.
This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.
This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. Ordinarily the papers would appear in the AMS translation of that journal, but to expedite publication, the Society has chosen to publish them as a volume of selected papers. The papers range over a variety of topics, including nonlinear partial differential equations, $C*$-algebras, and Schrodinger operators. The volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.