Download Free Selected Papers On Algebra And Topology By Garrett Birkhoff Book in PDF and EPUB Free Download. You can read online Selected Papers On Algebra And Topology By Garrett Birkhoff and write the review.

The present volume of reprints are what I consider to be my most interesting and influential papers on algebra and topology. To tie them together, and to place them in context, I have supplemented them by a series of brief essays sketching their historieal background (as I see it). In addition to these I have listed some subsequent papers by others which have further developed some of my key ideas. The papers on universal algebra, lattice theory, and general topology collected in the present volume concern ideas which have become familiar to all working mathematicians. It may be helpful to make them readily accessible in one volume. I have tried in the introduction to each part to state the most significant features of ea ch paper reprinted there, and to indieate later developments. The background that shaped and stimulated my early work on universal algebra, lattice theory, and topology may be of some interest. As a Harvard undergraduate in 1928-32, I was encouraged to do independent reading and to write an original thesis. My tutorial reading included de la Vallee-Poussin's beautiful Cours d'Analyse Infinitesimale, Hausdorff's Grundzüge der Mengenlehre, and Frechet's Espaces Abstraits. In addition, I discovered Caratheodory's 1912 paper "Vber das lineare Mass von Punktmengen" and Hausdorff's 1919 paper on "Dimension und Ausseres Mass," and derived much inspiration from them. A fragment of my thesis, analyzing axiom systems for separable metrizable spaces, was later published [2]. * This background led to the work summarized in Part IV.
From the reviews: "About 30 years ago, when I was a student, the first book on combinatorial optimization came out referred to as "the Lawler" simply. I think that now, with this volume Springer has landed a coup: "The Schrijver". The box is offered for less than 90.- EURO, which to my opinion is one of the best deals after the introduction of this currency." OR-Spectrum
The deep and original ideas of Norman Levinson have had a lasting impact on fields as diverse as differential & integral equations, harmonic, complex & stochas tic analysis, and analytic number theory during more than half a century. Yet, the extent of his contributions has not always been fully recognized in the mathematics community. For example, the horseshoe mapping constructed by Stephen Smale in 1960 played a central role in the development of the modern theory of dynami cal systems and chaos. The horseshoe map was directly stimulated by Levinson's research on forced periodic oscillations of the Van der Pol oscillator, and specifi cally by his seminal work initiated by Cartwright and Littlewood. In other topics, Levinson provided the foundation for a rigorous theory of singularly perturbed dif ferential equations. He also made fundamental contributions to inverse scattering theory by showing the connection between scattering data and spectral data, thus relating the famous Gel'fand-Levitan method to the inverse scattering problem for the Schrodinger equation. He was the first to analyze and make explicit use of wave functions, now widely known as the Jost functions. Near the end of his life, Levinson returned to research in analytic number theory and made profound progress on the resolution of the Riemann Hypothesis. Levinson's papers are typically tightly crafted and masterpieces of brevity and clarity. It is our hope that the publication of these selected papers will bring his mathematical ideas to the attention of the larger mathematical community.
Works of Shizuo Kakutani, Japanese-American mathematician, best known for his eponymous fixed-point theorem.
The works of George G. Lorentz, spanning more than 60 years, have played a significant role in the development and evolution of mathematical analysis. The papers presented in this volume represent a selection of his best works, along with commentary from his students and colleagues.
Since its original publication in 1940, this book has been revised and modernized several times, most notably in 1948 (second edition) and in 1967 (third edition). The material is organized into four main parts: general notions and concepts of lattice theory (Chapters I-V), universal algebra (Chapters VI-VII), applications of lattice theory to various areas of mathematics (Chapters VIII-XII), and mathematical structures that can be developed using lattices (Chapters XIII-XVII). At the end of the book there is a list of 166 unsolved problems in lattice theory, many of which still remain open. It is excellent reading, and ... the best place to start when one wishes to explore some portion of lattice theory or to appreciate the general flavor of the field. --Bulletin of the AMS
The Collected Papers of Raoul Bott are contained in five volumes, with each volume covering a different subject and each representing approximately a decade of Bott's work. The volumes are: Volume 1: Topology and Lie Groups (1950's) Volume 2: Differential Operators (1960's) Volume 3: Foliations (1970's) Volume 4: Mathematics Related to Physics (1980's) Volume 5: Completive Articles and Additional Biographic Material (1990's) Most of the papers in this volume deal with two physical-inspired themes: the Yang-Mills equations and the rigidity phenomena of vector bundles. It also contains Bott's own commentaries on a few of the papers, as well as a tribute by Clifford Taubes.
In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics—an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce’s successors—William Fogg Osgood and Maxime Bôcher—undertook the task of transforming the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Birkhoff produced a dazzling body of work, while training a generation of innovators—students like Marston Morse and Hassler Whitney, who forged novel pathways in topology and other areas. Influential figures from around the world soon flocked to Harvard, some overcoming great challenges to pursue their elected calling. A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.