Download Free Selected Papers Of Abdus Salam Book in PDF and EPUB Free Download. You can read online Selected Papers Of Abdus Salam and write the review.

This is a selection from over 250 papers published by Abdus Salam. Professor Salam has been Professor of Theoretical Physics at Imperial College, London and Director of the International Centre for Theoretical Physics in Trieste, for which he was largely responsible for creating. He is one of the most distinguished theoretical physicists of his generation and won the Nobel Prize for Physics in 1979 for his work on the unification of electromagnetic and weak interactions. He is well known for his deep interest in the development of scientific research in the third world (to which ICTP is devoted) and has taken a leading part in setting up the Third World Academy. His research work has ranged widely over quantum field theory and all aspects of the theory of elementary particles and more recently into other fields, including high-temperature superconductivity and theoretical biology. The papers selected represent a cross section of his work covering the entire period of 50 years from his student days to the present.
This book presents a biography of Abdus Salam, the first Muslim to win a Nobel Prize for Science (Physics 1979), who was nevertheless excommunicated and branded as a heretic in his own country. His achievements are often overlooked, even besmirched. Realizing that the whole world had to be his stage, he pioneered the International Centre for Theoretical Physics in Trieste, a vital focus of Third World science which remains as his monument. A staunch Muslim, he was ashamed of the decline of science in the heritage of Islam, and struggled doggedly to restore it to its former glory. Undermined by his excommunication, these valiant efforts were doomed.
Professor Kun Huang is widely known for his collaboration with Max Born in writing the classic monograph, Dynamical Theory of Crystal Lattices. During his years of active research, he has made important contributions to solid state physics. This collection of papers is selected at his own choice as representing his most influential works. Included is his work on the interaction of radiation field with polar lattices and the resulting coupled vibration modes (later known as polariton); the systematic development of his theory of radiative and nonradiative multiphonon transition processes associated with lattice relaxation; his early prediction of diffuse X-ray scattering due to crystal defects; and his research works on low-dimensional semiconductor structures, and more. Professor Huang has found by his experience that scientists interested in these papers often want to know more particulars underlying the research work (such as background, motivation and rationale involved). Thus he was led to write a commentary which is published alongside the papers.
Selected articles on quantum chemistry, classical and quantum electrodynamics, path integrals and operator calculus, liquid helium, quantum gravity and computer theory
This invaluable book is a selection of papers by theoretical physicist and Nobel laureate J Robert Schrieffer. In addition to his Nobel Prize-winning work in superconductivity, Prof Schrieffer has made significant contributions to a wide variety of topics in condensed matter physics. These include the theory of soliton excitations in polyacetylene (a clear example of spin-charge separation in a condensed matter system), paramagnon theory, magnetic impurities, the physics of surfaces, high-Tc superconductivity, and the fractional quantum Hall effect.The papers are reviewed and placed in context by leading experts. The guest contributors are A Alexandrov (on electrons and phonons), T Einstein (on surfaces,) S Kivelson (on quantum Hall effect), D Scalapino (on the BCS theory of superconductivity), F Wilczek (on solitons and fractional quantum numbers), J W Wilkins (on magnetic impurities) and S C Zhang (on high-Tc superconductivity).
In published papers H A Bethe and G E Brown worked out the collapse of large stars and supernova explosions. They went on to evolve binaries of compact stars, finding that in the standard scenario the first formed neutron star always went into a black hole in common envelope evolution. C-H Lee joined them in the study of black hole binaries and gamma ray bursts. They found the black holes to be the fossils of the gamma ray bursts. From their properties they could reconstruct features of the burst and of the accompanying hypernova explosions.This invaluable book contains 23 papers on astrophysics, chiefly on compact objects, written over 23 years. The papers are accompanied by illuminating commentary. In addition there is an appendix on kaon condensation which the editors believe to be relevant to the equation of state in neutron stars, and to explain why black holes are formed at relatively low masses.
This invaluable volume contains a biography of Nobel laureate Norman F Ramsey as well as reprints and retrospective commentaries on 56 papers relating to spectroscopy with coherent radiation. The earliest papers describe his work with I I Rabi, developing the then new magnetic resonance method and its uses to measure magnetic moments of the different forms of hydrogen and to discover the deuteron electric quadrupole moment. Later papers include his invention of the method of coherent separated oscillatory fields, the development of the atomic hydrogen maser and the uses of these methods to measure properties of nucleons, nuclei, atoms and molecules and to test parity and time reversal symmetries. Other papers present the first successful theories of nuclear magnetic shielding, NMR chemical shifts, electron-coupled nuclear spin-spin interactions and negative absolute temperatures.
This book presents a selection of papers, written by Nicolaas Bloembergen and his associates during the years 1946-1962, on the subjects of nuclear magnetic relaxation, paramagnetic relaxation and masers, and magnetic resonance spectroscopy of solids. The volume begins with autobiographical notes to provide a personal historical background. Each paper is preceded by commentary with additional information regarding the early development of magnetic resonance in condensed matter. A reproduction of his Ph.D. thesis, “Nuclear Magnetic Relaxation”, Leiden, 1948, is included in this volume.
This selection of papers in the field of nonlinear optics contains reprints of original research, and general reviews written since 1960 up to the present. Brief comments by the author place each paper in a historical context of the evolution of nonlinear optics. Papers are selected from a more comprehensive bibliography either on the basis of their influence on subsequent developments or because they were originally published in journals or conference proceedings which are less easily accessible.
This invaluable book presents most of the important papers of Emil Wolf, published over half-a-century. It covers chiefly diffraction theory (especially the analysis of the focal region), the theory of direct and inverse scattering, phase-space methods in quantum mechanics, the foundation of radiometry, phase conjugation and coherence theory. Several papers which have become classics of the optical literature are included, such as those on Wolf''s rigorous formulation of the theory of partial coherence and partial polarization, the introduction of diffraction tomography, and his discovery of correlation-induced shifts of spectral lines (often called the Wolf effect). There are also papers dealing with the historical development of optics and some review articles. Contents: Diffraction; Radiation Theory and String Excitations; Coherence and Statistical Optics; Scattering; Foundations of Radiometry; Articles of Historical Interest; Analyticity, Causality and Dispersion Relations; Scientists Who Created the World of Optics; The Development of Optical Coherence Theory; Recollections; Commencement Remarks; Publications of Emil Wolf. Readership: Physicists and engineers, particularly optical scientists and optical engineers.