Download Free Seismic Vulnerability Of New Highway Construction Book in PDF and EPUB Free Download. You can read online Seismic Vulnerability Of New Highway Construction and write the review.

The Loma Prieta earthquake struck the San Francisco area on October 17, 1989, causing 63 deaths and $10 billion worth of damage. This book reviews existing research on the Loma Prieta quake and draws from it practical lessons that could be applied to other earthquake-prone areas of the country. The volume contains seven keynote papers presented at a symposium on the earthquake and includes an overview written by the committee offering recommendations to improve seismic safety and earthquake awareness in parts of the country susceptible to earthquakes.
This volume comprises papers presented at the China-US Millennium Symposium on Earthquake Engineering, held in Beijing, China, on November 8-11, 2000. This conference provides a forum for advancing the field of earthquake engineering through multi-lateral cooperation.
This invitation conference, held Dec. 2 and 3, 1994, included earth scientists, engineers, social scientists, agency program managers, and practitioners and others who implement earthquake research. Chapters include: NSF-funded Northridge Earthquake researchers; summary of USGS Northridge supplementary funding; NIST Northridge research; FEMA Northridge research; organizational research programs: Calif. Div. of Mines and Geology, Calif. Seismic Safety Comm., EERI, NCEER, NHRAIC, Rand Critical Technologies Inst., and SAC Joint Venture; Info. Services: EERC-NISEE, NCEER Info. Services, and OES DFO; and individuals' research projects.
This executive summary gives an overview of the results of FHWA Contract DTFH61 92 C 00112, Seismic Research Program, which performed a series of special studies addressing the seismic design of new construction. The objectives of this project were to perform a series of special studies pertaining to the seismic vulnerability of highway structures, and to develop technical information on which future specifications for the seismic design of bridges could be based. This project divided work into 5 areas and 13 tasks, focusing on the following elements: review of current seismic design criteria, the seismic hazard exposure of the American highway system, foundation design and soil behavior, structural design, structural analysis and response, the relative importance of specific bridges and an assessment of the impact of current and recently completed research. The Seismic Research Program had a national focus, and aimed in part to address the differences in seismicity, bridge types, and typical design details between the central and eastern United States (CEUS) and those previously studied in California and the western United States. In many cases, west coast design practices required considerable modification before implementation in the CEUS. The project resulted in 34 research reports, of which 31 are summarized in this document. Seventeen of the reports have been published as National Center for Earthquake Engineering Research (NCEER) or Multidisciplinary Center for Earthquake Engineering Research (MCEER) reports. The research agencies final reports for the other taks are available from MCEER upon request.
Produced by 24 experts in the field and based on the latest LRFD codes and strength design procedures, this is the only reference on composite construction for buildings that examines all three of these critical developments. An essential guide for design engineers and students of structural engineering, it thoroughly surveys the current thinking in the field. And it helps the structural engineer become familiar with the latest design principles and methods, and their application in structural framing for all types of steel-framed buildings. The text's narrative is enhanced by nearly 200 figures and is supported by over 450 references (listed in Chapter 7), a historical review of composite construction, and 18 informative building case histories. The design of composite elements is illustrated with numerous step-by-step examples.
The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.